S-20 & 21 June, 2017 AC after Circulars

DR. BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY CIRCULAR NO.SU/Engg./S.Y.B.Tech./02/2017

It is hereby informed to all concerned that, the syllabi prepared by the Committees & recommended by the Dean, Faulty of Science & Technology, the Academic Council at its meeting held on 20 & 21 June 2017 has accepted the following syllabi in accordance with Choice Based Credits & Grading System for all Branches S.Y.B.Tech under the Faulty of Science & Technology as enclosed herewith.

Sr.No.	Syllabi as per CBC & GS
[1]	Second Year B.Tech.[Civil Engineering],
[2]	Second Year B.Tech. [Mechanical Engineering],
[3]	Second Year B.Tech. [Agricultural Engineering],
[4]	Second Year B.Tech.[Electrical Engineering],
[5]	Second Year B.Tech. [Plastic & Polymer Engineering],
[6]	Second Year B.Tech [Electronics & Telecommunication Engg.],
[7]	Second Year B.Tech. [Computer Science Engineering].
. J	

This is effective from the Academic Year 2017-2018 and onwards.

All concerned are requested to note the contents of this circular and bring the notice to the students, teachers and staff for their information

and necessary action.

Date:- 28-06-2017.

University Campus,	*
Aurangabad-431 004.	*
REF.NO. SU/S.Y.B.TECH.2017/2,73	-84 +
,	

Deputy Registrar, Syllabus Section.

Copy forwarded with compliments to :-

- 1] The Principals, affiliated concerned Colleges,
- Dr. Babasaheb Ambedkar Marathwada University.
- 2] The Director, University Network & Information Centre, UNIC, with <u>a</u> request to upload this Circular on University Website.
 Copy to :-
- 1] The Director, Board of Examinations & Evaluation,
- 2] The Section Officer, [Engineering Unit] Examination Branch,
- 3] The Section officer, [Eligibility Unit],
- 4] The Programmer [Computer Unit-1] Examinations,
- 5] The Programmer [Computer Unit-2] Examinations,
- 6] The In-charge, [E-Suvidha Kendra],
- 7] The Public Relation Officer,
- 8] The Record Keeper,

SCHEME AND DETAILED SYLLABUS

of

S. Y. B. Tech. (Mechanical Engineering) Under Choice Based Credit & Grading System (w.e.f. academic year 2017-18 & onwards/-)

FOUR YEAR DEGREE COURSE IN SCIENCE & TECHNOLOGY

DR. BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY, AURANGABAD

FACULTY OF SCIENCE AND TECHNOLOGY Revised Structure w.e.f. 2017-2018

Second Year B. Tech. (Mechanical Engineering)

	Semester III	Co	ntact	Hrs	/ Week	Examination Scheme					Duration	
Course Code	Course	L	Т	Р	Total	СТ	ТН	ТА	Р	Total	Credits	of Theory Exam
BSH201	Engineering Mathematics – III	3	1	-	4	20	80	-	-	100	4	3 Hrs
MED202	Strength of Materials	3	1	-	4	20	80	-	-	100	4	3 Hrs
MED203	Fluid Mechanics	4	-	-	4	20	80	-	-	100	4	3 Hrs
MED204	Manufacturing Process – I	4	-	-	4	20	80	-	-	100	4	3 Hrs
MED205	Metrology & Quality Control	4	-	-	4	20	80	-	-	100	4	3 Hrs
MED206	Engineering Thermodynamics	2	-	-	2	10	40	-	-	50	2	2 Hrs
MED221	Lab: Fluid Mechanics	-	-	2	2	-	-	25	25	50	1	-
MED222	Lab: Strength of Materials	-	-	2	2	-	-	50	-	50	1	-
MED223	Lab: Metrology & Quality Control	-	-	2	2	-	-	25	25	50	1	-
MED224	Workshop Practise – II			2	2			25	25	50	1	-
BSH225	Lab: DOS – II	-	-	2	2	-	-	50	-	50	1	-
Total of Semester – III		20	2	10	32	110	440	175	75	800	27	-
	Semester III	Contact Hrs / Week			Examination Scheme				Duration			
Course Code	Course	L	Т	Р	Total	СТ	ТН	ТА	Р	Total	Credits	of Theory Exam
BSH251	Engineering Mathematics – IV	3	1	-	4	20	80	-	-	100	4	3 Hrs
MED252	Machine Drawing	4	-	-	4	20	80	-	-	100	4	4 Hrs
MED253	Manufacturing Process – II	4	-	-	4	20	80	-	-	100	4	3 Hrs
MED254	Applied Thermodynamics	3	1	-	4	20	80	-	-	100	4	3 Hrs
MED291-293	Elective – I *	4	-	-	4	20	80	-	-	100	4	3 Hrs
MED255	Electrical Technology	2	-	-	2	10	40	-	-	50	2	2 Hrs
MED271	Lab: Machine Drawing	-	-	2	2	-	-	25	25	50	1	-
MED272	Lab: Applied Thermodynamics	-	-	2	2	-	-	25	25	50	1	-
MED273	Lab: Workshop – III	-	-	2	2	-	-	25	25	50	1	-
MED274	Lab: Electrical Technology			2	2			50	-	50	1	-
MED275	Lab: DOS III	-	-	2	2	-	-	50	-	50	1	-
Total of Semester – IV			2	10	32	110	440	175	75	800	27	-
Grand Total of Semester III & IV						220	880	350	150	1600	54	

L: Lecture hours per week T: Tutorial hours per week P: Practical hours per week CT: Class Test TH: University Theory Examination TW: Term Work P: Practical/Oral Examination

* Elective I:

MED291:Alternative Energy Sources MED292:Advanced Solid Mechanics MED293:Total Quality Management

	Dr. Babasaheb Ambedkar Marathwada University, Aurangabad						
(Faculty of Engineering & Technology)							
~	Syllabus of S. Y. B. Tech. (All) Semester-III						
Cours	Course Coue: DSf1201 Course: Engineering Mathematics –III Taashing Sahamaa 04Ung/mash Class Taata 20						
Teach	nnş	g Scheme: 04Hrs/week	Class Test: 20marks				
Theory: 03Hrs/week		03Hrs/week	Theory Examination (Duration): 03 Hrs				
	1ai	: UIHr/week	Theory Examination (Marks): 80				
	Its:	1 The contents since to develop	and analy the lynewileder of the student in the				
Objectives	:	1. The contents alms to develop	tical problem of differential equation in the				
		angingering and technology	lical problem of differential equation in the				
		2 To develop Logical understand	ling of statistics				
		2. To develop Logical understand	ransform				
∐nit_I	•	5. To study the basic of Laplace transform.					
Unit-1	•	Solution of linear differential equation of order n with constant coefficients: The					
		complementary function, Method of finding particular integral: Short method.					
		General method. Method of variation of parameters.					
		Equations reducible to linear equations with constant coefficients: i) The					
		Cauchy's linear equation. ii) The Legendre's linear equation. (10 Hrs)					
Unit-II		Application of linear differential equations to:					
		i) Mechanical system.					
		ii) Electrical System					
		iii) Beam and Shafts (04 Hrs)					
Unit-III	:	Vector Differentiation:					
		Differentiation of vectors, Ra	dial, Transverse, Normal and tangential				
		components of velocity and ac	celeration, Scalar and vector point function				
		Gradient of scalar point function,	Divergence and curl of vector point function				
		Second order differentiation opera	tor, Irrotational and solenoid fields.				
		(10 Hrs)					

Unit-IV	:	Laplace Transform:						
		Definition, Laplace Transform of elementary function and its table, Theorem						
		and properties of Laplace Transform: First shifting theorem, Second Shifting						
		Theorem, Multiplication by t, Division by t, Change of scale property, Laplace						
		Transform of integral, Laplace Transform of Derivative.						
		Laplace Transform of some special functions: Periodic function, Heaviside Unit						
		Step Function, Displaced Heaviside Unit Step Function Laplace Transform						
		using Heaviside Unit function, Dirac delta function.						
		Method to find inverse Laplace Transform:						
		i. Use of Laplace Transform table						
		ii. Use of Theorem and properties of Laplace						
		iii. Use of partial fraction						
		iv. Convolution theorem						
		v. Use of development of Heaviside Unit Step Function						
		Application of Laplace Transform to solve linear differential equation (12 Hrs)						
Unit-V	:	Fourier Transform:						
		Fourier integral: Complex form of Fourier integral, sine and cosine integral,						
		Fourier transform and inverse transform. D.U.I.S. rule (only statement), Fourier						
		ransform and inverse transform for even and odd function, Fourier sine and						
		cosine transform and inverse transform.						
		(7 Hrs)						
Unit-VI	:	Statistics:						
		Measures of central tendency: Mean, Median, Quartiles and Mode. Measures of						
		dispersion: Quartile deviation, Mean deviation, Standard deviation, coefficient						
		of variation. (5 Hrs)						
Reference	:	1. A Text Book of Applied Mathematics Volume-III by P.N. Wartikar						
Books:		J.N.Wartikar, Pune Vidyarthi Griha Prakashan.						
		2. Advanced Engineering Mathematics by H. K. Dass, S. Chand and Co.						
		Ltd.						
		3. Higher Engineering Mathematics by Dr. B. S. Grewal, Khanna						
		Publishers.						
		4. Higher Engineering Mathematics by B. V. Ramana, Tata McGraw-Hill						
		Publishing Co. Ltd.						
		5. Solution to Higher Engineering Mathematics Volume –III by C. P.						
		Gandhi						

Pattern of Question Paper:

The six/four units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum ten questions
- 2. Five questions in each section
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for ten marks each. The Question no.1 and 6 should be of objective nature.
- 4. Two questions of 15 marks each from remaining questions from each section A and B be asked to solve.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad					
(Faculty of Science and Technology)					
	Syllabus of S. Y. B.	Tech (Mechanical)			
Course Code:	MED202				
Course: Strength of MaterialsCredits: 4					
Teaching Sch	eme:	Class Test: 20 Marks			
Theory: 3 Hrs	/week	Theory Examination: 80 Marks			
Tutorial: 1 Hr	/Week	Theory Examination (Duration): 3 Hrs			
Objectives:					
1) To provide	the basic concepts and principles	of strength of materials.			
2) To develop	the theoretical basis and to deriv	e the theories of the strength of materials and to			
enable stuc	lents to systematically solve engin	eering problemsand design engineering systems.			
Unit – I	 Theory of Stresses and Strains Concept, Types of Stresses and Strains, Poison's Ratio, Stresses and Strains in Simple and Compound Bars under Axial Loading, Stress-Strain Diagram, Hooks Law, Elastic Constants and Relationships, Temperature Stresses and Strains In Simple Bars under Axial Loading, Concept of Surface and Volumetric Stresses and Strains. 				
	Bending and Deflection of Beau	ms			
Unit – II	Relation between Transverse La Bending Moment Diagrams, Pr Sections, Beams with Compos Relationship between Bending M	oads, Shear and Bending Moments, Shear and ure Bending – Beams with Symmetric Cross- ite Cross-Section, Shear Stresses in Beams, Ioment.			
	Slope & Deflection, Mohr's ' Integration, Macaulay's Method Cantilevers And (ii) Simply Supp	Theorem, Moment Area Method, Method of I, Calculations for Slope and Deflection of (i) ported Beams (iii) Overhang Beams			
		12 Hrs			
Unit – IIIThin Cylindrical and Spherical ShellsUnit – IIIThin Pressure Vessels, Circumferential and Longitudinal Stresses, Cylindrica and Spherical Objects Subjected to Internal Fluid Pressure, Volumetric Strains.04 Hr					
1	Principal Stresses Direct and Bending Stresses wi Loaded Short Struts & Chimneys	th Axial Loads, Core of Section, Eccentrically			
	Concept of Stress on Oblique Pl of Maximum Shear, Mohr's Circ Stresses.	lane in Two Dimensional Stress System, Planes cle of Two Dimensional and Three Dimensional			

	08 Hrs
	Theory of Torsion
Unit – V	Stepped Shaft and Composite Circular Shafts, Combined Bending and Torsion,
	Equivalent Torque, Torsional Moment Diagrams, Effect of End Thrust.
	10 Hrs
	Energy Methods
	Strain Energy due Gradually Applied Loads, Suddenly Applied Loads & Impact
Unit VI	Loads. Stored Energy In Elastic Members: Axial, Torsional & Bending,
$\operatorname{Omt} - \operatorname{vi}$	Castigliano's First & Second Theorem, Application of Castigliano's Theorem to
	Different Classes of Problems, Virtual Work Principles – The Basis.
	06 Hrs

List of Reference Books, e – Journals						
Sr. No.	Title	Author	Publications			
1	Strength of Materials	S. Ramamrutham	Dhanpatrai & Sons Publications			
2	Strength of Materials	R. K. Bansal	Laxmi Prakashan			
3	Strength of Materials	R. S. Khurmi	S. Chand			
4	Strength of Materials	S. S. Ratan	TMH Publication			
5	Elements of Strength of Materials	Timoshenko	D. Van Nostrand Company Inc.			

Pattern of Question Paper:

The six units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum ten questions
- 2. Five questions in each section
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for ten marks each.

4. Two questions of 15 marks each from remaining questions from each section A and B be asked to solve.

]	Dr. Babasaheb Ambedkar Marathwada University, Aurangabad					
(Faculty of Science and Technology)						
	Syllabus of S. Y. B.Tech (Mechanical)					
Course Code:	: MED203					
Course: Fluid	Course: Fluid Mechanics Credits: 4					
Teaching Sch	eme: Class	Test: 20 Marks				
Theory: 4 Hrs	s/week Theo	ry Examination: 80 Marks				
Tutorial: 0 Hi	r/Week Theo	ry Examination (Duration): 3 Hrs				
Objectives:						
1) Prepare the	e students for effective use of fluid mecha	nics in the practice of engineering.				
2) Introduce pr	roperty relations relevant to engineering appl	ications.				
3) To understa	and types and properties of fluid and relative	study.				
4) 10 undersu	and and study the benaviour of fluid whe	en the fluid is in motion with and without				
5) Solve the pr	roblems by applying the fundamental laws of	fluid mechanics				
	Introduction to Fluid Statics					
	A. Introduction:-					
	• Scope and Engineering applications.					
	 Properties of Fluids Types of Fluids 					
	B. Fluid Statics:-					
	Pascal's Law Hydrostatics law					
Unit – I	 Fluid Pressure Measurements with mechanical gauges and manometers 					
	 Total Pressure and centre of pre 	• Total Pressure and centre of pressure on vertical plane, inclined plane and				
	curved surfaces.	curved surfaces.				
	Concept of Buoyancy, Archime	des' Principle,				
	• Meta-center, Metacentric height					
	• Equilibrium of floating and sub	nerged bodies.				
		08 Hrs				
	Fluid Kinematics and Dynamics					
	A. Fluid Kinematics:-					
	• Introduction, types of fluid flow					
	Continuity equation in Cartesian	n coordinates, Polar coordinates,				
	Concept of Velocity Potential and Stream Function					
Unit – II	• Free and forced vortex flow, Radial flow					
	B. Energy Equation and its application	ons:-				
	Forces acting on fluids in motio	n,				
	• Euler's equation of motion,					
	• Bernoulli's equation and its app	lications such as venturimeter, orifice				

	meter and pitot tube,
	• The Momentum equation,
	• Force exerted by flowing fluid on a pipe-bend,
	C. Introduction to Computational Fluid Dynamics:-
	• The Need of CFD,
	Applications of CFD
	Introduction to Basic CFD/Numerical Methods
	10 Hrs
	Dimensional Analysis and Similarity
	• Dimensions of various physical quantities
	Dimensional homogeneity
IIn:4 III	• Rayleigh's method
Unit – 111	• Buckingham's п Theorem,
	• Types of similarities,
	• Dimensionless numbers and their significance
	06 Hrs
	External Incompressible Viscous Flow
	A. Boundary Layer Theory:-
	• Concept of boundary Layer, Thickness of Boundary Layer.
	• Displacement thickness, Momentum thickness and Energy thickness.
	• Separation of boundary layer.
Unit – IV	B. Fluid Flow About Immersed Bodies:-
	• Drag:-Pure Friction Drag: Flow over a Flat Plate Parallel to the Flow.
	• Pure Pressure Drag: Flow over a Flat Plate Normal to the Flow.
	• Friction and Pressure Drag: Flow over a Sphere and Cylinder.
	• Lift.
	00 Hrs
	Flow Through Pines
	 Shear Stress Distribution in Fully Developed Pipe Flow
	 Turbulent Velocity Profiles in Fully Developed Pipe Flow.
	 Energy Considerations in Pine Flow
Unit V	Kinatic Energy Coefficient
onit – v	Head Loss Calculation of Head Loss
	Major Lossa, Eristion Easter
	Minor Losses
	- WIIIOI LUSSES. 09 Hrs
····	Introduction to Compressible Flow
Unit – VI	• Introduction

Propagation of sound waves
• Types of flow:-Mach Cone, Sonic, Subsonic and Supersonic flow
Basic Equations for One-Dimensional Compressible Flow
06 Hrs

List of Reference Books, e – Journals					
Sr. No.	Title	Author	Publications		
1	Fluid Mechanics and Hydraulic Machines	R. K. Bansal	Laxmi Publication		
2	Fluid Mechanics Fundamentals and Applications	Yunis A. Cengel and John M. Chimbala	ТМН		
3	Fluid Mechanics	V.L. Streeter & E.B. Wylie	ТМН		
4	Fox and McDonald's Introduction to Fluid Mechanics	Philip J Pritchard and John C Leylegian	JOHN WILEY & SONS, INC.		
5	Hydraulics and Fluid Mechanics	Modi & Seth	Standard Book House		

Pattern of Question Paper:

The six units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum ten questions
- 2. Five questions in each section
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for ten marks each.
- 4. Two questions of 15 marks each from remaining questions from each section A and B be asked to solve.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad			
(Faculty of Science and Technology)			
	Syllabus of S. Y. B.Tech (Mechanical)		
Course Code:	MED204		
Course: Manu	ufacturing Process – I Credits: 4		
Teaching Sch	eme: Class Test: 20 Marks		
Theory: 4 Hrs	Week Theory Examination: 80 Marks		
Tutorial: 0 H	r/Week Theory Examination (Duration): 3 Hrs		
Objectives:			
1) On succes	sful completion of this Course, students should be able to conversant with		
primary a	nd secondary manufacturing processes such as Shaping processes like		
Solidificati	ion processes, Particulate processing, Deformation processes and Joining		
processes.			
	Introduction to Overview of Manufacturing		
	Manufacturing Definition, Manufacturing Industries and Products		
Unit – I	• Materials in Manufacturing : Metals, Ceramics, Polymers, Composites		
	• Manufacturing Processes : Processing Operations, Assembly		
	Operations, Production Machines and Tooling		
	04 Hrs		
	Solidification Processes Metal Casting Fundamentals		
	• Overview of Casting Technology : Casting Processes, Sand-Casting		
	Moulds		
	• Heating and Pouring: Foundry practices-Cupolas, Direct Fuel-Fired		
	Furnaces, Crucible Furnaces, Electric-Arc Furnaces, Induction		
	Furnaces.		
	• Solidification and Cooling : Solidification of Metals, Shrinkage,		
	Directional Solidification, Riser Design		
	Sand Casting		
Unit – H	• Patterns and Cores, Molds and Mold Making, The Casting Operation		
	Expandable Mould Casting Processes		
	• Shell Molding, Vacuum Molding, Investment Casting, Plaster-Mold		
	and Ceramic-Mold Casting		
	Permanent Mould Casting Processes		
	• The Basic Permanent-Mold Process, Variations of Permanent-Mold		
	Casting, Die Casting, Squeeze Casting and Semisolid Metal Casting,		
	Centrifugal Casting		
	Casting Quality		
	• Casting Detects, Inspection Methods 12 Hrs		

	Metal Forming Processes
Unit – III	Fundamentals of Metal Forming
	• Classification of metal forming operations, Material Behaviour in Metal Forming, Temperature in Metal Forming, Strain Rate Sensitivity, Friction and Lubrication in Metal Forming
	 Bulk Deformation Process Rolling: Flat Rolling and Its Analysis, Shape Rolling, Rolling Mills Forging : Open-Die Forging, Impression-Die Forging, Flash less Forging, Forging Hammers, Presses, and Dies Extrusion : Types of Extrusion, Extrusion Dies and Presses, Extrusion Processes, Defects in Extruded Products Wire and Bar Drawing : Analysis of Drawing, Drawing Practice, Tube Drawing
	Joining and Assembly Processes
	 Welding Processes Types of Welding Processes, Types of Joints, Types of Welds, Features of a Fusion-Welded Joint, HAZ Weld Quality: Welding Defects, Inspection and Testing Methods Design Considerations in Welding
Unit – IV	 Fusion Welding Arc Welding : General Technology of Arc Welding, Consumable-Nonconsumable Electrodes Resistance Welding : Power Source in Resistance Welding, Resistance-Welding Processes Oxyfuel Gas Welding : Oxyacetylene Welding, Alternative Gases for Oxyfuel Welding Other Fusion-Welding Processes Solid State Welding : General Considerations in Solid-State Welding, Solid State-Welding Processes Brazing, Soldering, and Adhesive Bonding Brazing Methods, Soldering Methods, Adhesive Application Technology Mechanical Assembly Threaded Fasteners, Rivets and Eyelets, Assembly Methods Based on Interference Fits
	10 Hrs

	Shaping Processes for Plastics	
	Types of Polymers, Properties of Polymer Melts	
	• Extrusion : Process and Equipment, Defects in Extrusion	
	Production of Sheet and Film	
Unit V	• Injection Molding : Process and Equipment, The Mold, Injection	
Unit – v	Molding Machines, Shrinkage and Defects in Injection Molding	
	Compression and Transfer Molding	
	Blow Molding and Rotational Molding	
	• Thermoforming	
	06 Hrs	
	Sheet Metal Working	
	• Cutting Operations : Shearing, Blanking, Punching, cut-off, piercing,	
	perforating, notching, lancing	
	• Forming Operations : Bending, flanging, curling, ribbing, corrugating,	
	hemming, crimping,	
Unit – VI	• Drawing : Redrawing, deep drawing, Defects in Drawing	
	Dies and Presses for Sheet-Metal Processes	
	Powder Metallurgy	
	• Powder metallurgy as manufacturing process : need, process,	
	advantages and applications	
	08 Hrs	

List of Reference Books, e – Books, e – Journals			
Sr. No.	Title	Author	Publications
1	Fundamentals of Modern Manufacturing	Mikell P. Groover	John Wiley & Sons
2	Materials and Processes in Manufacturing	Degarmo, J. T. Black, Ronald A. Kohser	John Wiley & Sons
3	Production Technology,	Jain R.K.	Khanna Publications
4	Workshop Technology	B S Raghuwanshi	Dhanpat Rai and Sons
5	Workshop Technology	Hajra Chaudhary	Dhanpat Rai and Sons
6	Manufacturing Process II	H.S. Bawa	Tata Mc Graw hill Publishing Co. Ltd
7	Manufacturing Science	Amitabh Ghosh	East-West press

8	Processes and Materials of Manufacture	Roy A. Lind Berg	Prentice Hall Publications
---	---	------------------	----------------------------

Pattern of Question Paper:

The six units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum ten questions
- 2. Five questions in each section
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for ten marks each. The Question No. 1 and 6 should be objective in nature.
- 4. Two questions of 15 marks each from remaining questions from each section A and B be asked to solve.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad			
(Faculty of Science and Technology)			
Syllabus of S. Y. B. Tech (Mechanical)			
Course Code:	MED205		
Course: Metrology & Quality ControlCredits: 4		Credits: 4	
Teaching Sch	eme:	Class Test: 20 Marks	
Theory: 4 Hrs	/week	Theory Examination: 80 Marks	
Tutorial: 0 H	/Week	Theory Examination (Duration): 3 Hrs	
Objectives:			
1) Selection of	f tool and techniques for deter	mining geometry and dimensions.	
2) Design and	l calibration of measuring tools	and equipment's.	
3) Application	n of Quality Control Technique	es.	
4) Application	n of Quality Management Con	cept.	
	Introduction to Metrology		
	Basic Concepts		
	Legal Metrology - Precision	- Accuracy - Types of errors - Linear and Angular	
	Measurements, Standards	of Measurements - Slip gauges - Calibration -	
	Interchange ability and select	ive assembly.	
Unit – I	Introduction to Comparators		
	Types of Comparators - Mechanical Mechanical-Optical Electrical and		
	Flootronic pnoumatic Eluid Displacement Automatic gauging machines. Co		
	ordinate Measuring Machine		
	ordinate friedsuring fridefinite	10 Hrs	
	Screw Thread – Gear Meas	urements	
	Internal and External screw	v threads	
	Measurements of various elements of thread - Best size wire - Two and three		
	wire method.		
Unit – II	Gear		
	Measurements of various e	lements - Constant chord method - Base tangent	
	method		
		06 Hrs	
	Surface Finish Measureme	nt and Interferometry	
	Surface Finish		
	Surface tonography definition	ns - Measurement of Surface Texture - Methods -	
Init III	Surface topography definitions - measurement of Surface Texture - Methods - Evaluation of Surface finish Magning of DMS and CLA values. Credes of		
	roughness specifications	i. Meaning of Rivid and CLA values, Ordues of	
	Interferencet		
	Dringingle of light success int	forence Light company Towns of Later form	
	Principle of light wave inter	rerence - Light sources - Types of Interferometers.	

	Measurement of straightness - Flatness - Squareness - Parallelism - and
	Circularity.
	08 Hrs
	Statistical Quality Control
Unit – IV	Introduction - Definition of Quality - Chance Causes and assignable Causes - SQC Benefits and Limitations. Fundamental concepts in probability - Normal curve - Measures of Dispersion - Distributions - Binomial, Poisson, Geometric, Hyper geometric, Poisson as an approximation to Binomial, Normal as an approximation to Binomial.
	08 Hrs
	Theory of Control Charts
	Control Charts for Variables - X bar and R charts, Standard deviation charts -
Unit – V	run up - run down - Process capability studies. Control Charts for attributes -
	Fraction defectives - and number of defects - chart sensitivity.
	08 Hrs
	Acceptance Sampling
	Basic Concepts and OC curve - AQL - LTPD - AOQL - Sampling Plans - Simple
Unit – VI	- Double - Multiple and sequential sampling plans - stratified sampling plans for
	variables. Related problems using BIS code books.
	08 Hrs

List of Reference Books, e – Books, e – Journals			
Sr. No.	Title	Author	Publications
1	Engineering Metrology	Jain. R. K.	Khanna Publishers, New Delhi
2	Engineering Metrology	Hume K.J.	Macdonald Publications
3	Statistical Quality Control	Gupta. R. C.	Khanna Publishers, New Delhi
4	Statistical Quality Control	Grant S.P.	Tata McGraw hill Publication
5	Quality Control	Kulkarni V. A. and Bewoor A. K.	John Wiley Publication
6	Measurement System Applications and Design	Doeblin, E. O.	McGraw Hill, London
7	Juran J. M.	Quality Handbook	McGraw Hill, London

Section A: Includes Unit I, II and III;

Pattern of Question Paper:

The six units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum ten questions
- 2. Five questions in each section
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for ten marks each.
- 4. Two questions of 15 marks each from remaining questions from each section A and B be asked to solve.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad			
(Faculty of Science and Technology)			
Syllabus of S. Y. B.Tech (Mechanical)			
Course Code:	MED206		
Course: Engineering Thermodynamics Credits: 2			
Teaching Sch	eme:	Class Test: 10 Marks	
Theory: 2 Hrs	s/week	Theory Examination: 40 Marks	
Tutorial: 0 H	r/Week	Theory Examination (Duration): 2 Hrs	
Objectives:			
1) Prepare the	e student for effectively use of	thermodynamics in the practice of engineering.	
2) Introduce	property relations relevant to er	ngineering thermodynamics.	
3) Solve prob	lems by applying the first and	second law of thermodynamics.	
	First Law of Thermodynam	nics	
	Conservation of Mass	and the Control Volume	
	Conservation of Energy	gy for a Control Volume	
	Analysis of Control Volumes at Steady State		
	• Engineering Applications of Steady Flow Energy Equation (S.F.E.E.)		
Unit – I	Such as, Water turbin	ne, Steam or gas turbine, Centrifugal water, pump,	
	Centrifugal compressor, Reciprocating compressor, Boiler, Condenser,		
	Evaporator, Steam no	zzle	
	Throttling Process and	d Joule-Thompson Porous Plug Experiment	
	• Heating-Cooling and	Expansion of Vapours	
		06 Hrs	
	Second Law of Thermodyna	amics	
	• Limitations for First I	Law of Thermodynamics	
	• Heat Engines and Ref	rigerators	
	• The Second Law of T	hermodynamics	
	The Reversible Process and Factors that Render Processes Irreversible		
Unit – H	The Carnot Cycle		
	Two Propositions Res	parding the Efficiency of a Carnot Cycle	
	Fntrony Generation	furthing the Efficiency of a Carnot Cycle	
	 Principle of the Increase 	ase of Entrony	
	Engineering Application	ions	
	• Engineering Applicati	10115. 06 Hrs	
	Ideal Cas	00 HIS	
Unit III	Characteristic equation	on of state for a Perfect Cas	
 Unit – III Characteristic equation of state for a Perfect Gas P-V and T-s Diagrams for Work transfer and Heat transfer in Reve 			

	Processes		
	• Equation of state for Real Gas		
	• Internal energy of a gas and Joule's Law		
	• Specific Heats of a Gas and relation between them		
	• Different Gas Processes and Heat and Work Transfer in various Gas		
	processes		
	Concept of Entropy in different gas processes		
	06 Hrs		
	Properties of Pure Substance		
	 Properties and important definitions of Pure Substance 		
	Phases of a Pure Substance		
	Phase-Change Processes of Pure Substances		
	Compressed Liquid and Saturated Liquid		
	Saturated Vapour and Superheated Vapour		
T T •4 T T7	Saturation Temperature and Saturation Pressure		
Unit – IV	> Some Consequences of Saturation Temperature and Saturation		
	Pressure dependence		
	• Thermodynamic relations involving entropy		
	Properties of steam		
	• Enthalpy-entropy (<i>h</i> - <i>s</i>) chart or Mollier diagram		
	• Dryness fraction measurement		
	06 Hrs		

List of Reference Books, e – Books, e – Journals			
Sr. No.	Title	Author	Publications
1	Fundamentals of Thermodynamics	Claus Borgnakke and Richard e. Sonntag	John Wiley and Sons Publication
2	_Fundamentals of Engineering Thermodynamics	Michael J. Moran Howard N. Shapiro	John Wiley and Sons Publication
3	Basic and Applied Thermodynamics	P.K. Nag	TMH Publication
4	Thermodynamics: An engineering approach	Yunus A Cengel; Michael A Boles.	TMH Publication

Section A: Includes Unit I, II; Section B: Includes Unit III, IV.

Pattern of Question Paper:

The four units in the syllabus shall be divided in two equal parts i.e. 2 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum Eight questions
- 2. Four questions in each section
- 3. Question no 1 from section A and Question no 5 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for six marks each. The Question no.1 and 5 should be of objective nature.
- 4. Two questions of 07 marks each from remaining questions from each section A and B be asked to solve.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad			
(Faculty of Science and Technology)			
	Syllabus of S. Y. B.	Tech (Mechanical)	
Course Code:	MED221		
Course: Fluid	Mechanics	Credits: 1	
Teaching Sch	eme:	Teachers Assessment : 25 Marks	
Practical: 2 H	rs/week	Practical Examination: 25 Marks	
Objectives:1) To understand fundamental concepts in fluid mechanics by performing following experiments.			
	1) Study of pressure measuring devices		
	2) Determination of kinematic viscosity using Redwood Viscometer		
	3) Determination of metacentric height		
	4) Experimental verification of Bernoulli's theorem.		
	5) Reynolds Experiment to observe types of fluid flow		
List of	6) Determination of coefficient of discharge for venturimeter		
Practicals	7) Determination of coefficient of discharge for orifice meter		
	8) Determination of coefficient of friction in pipes		
	9) Determination of minor losses in piping system / pipe fittings		
	10) Simple application of the Euler method using excel work book		
	11) Simple numerical modelling of the Laplace equation using excel work book		
	12) Assignments on Unit I,II and	Unit V,VI	

- Continuous Assessment
- Performing the experiments in the laboratory/ Study experiment
- Oral examination conducted (internally) on the syllabus and the term work mentioned above

Practical Examination:

The practical examination shall consist of performing an experiment based on the practical work done during the course, the record of the experiments submitted by the candidate and Viva-voce based on the syllabus.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad				
	(Faculty of Science and Technology)			
	Syllabus of S. Y. I	3.Tech (Mechanical)		
Course Code:	MED222			
Course: Streng	gth of Materials	Credits: 1		
Teaching Sch	eme:	Teachers Assessment : 50 Marks		
Practical: 2 H	rs/week			
Objectives:				
1) Students sh	hould understand behaviour of d	ifferent materials under action of various types of		
loadings.				
	1) Tension Test on Ductile Ma	terial Like Mild Steel or TOR Steel		
	2) Flexural Test on Timber Beam			
List of	3) Shear Test on Metals (Single and Double Shear)			
Practicals	4) Impact Test on Metals (Izod and Charpy)			
	5) Torsion Test on Mild Steel			
	6) Hardness Test on Metals (R	ockwell and Brinell)		

- Continuous Assessment
- Performing the experiments in the laboratory/ Study experiment
- Oral examination conducted (internally) on the syllabus and the term work mentioned above

]	Dr. Babasaheb Ambedkar Mara	athwada University, Aurangabad	
(Faculty of Science and Technology)			
	Syllabus of S. Y. B	.Tech (Mechanical)	
Course Code:	MED223		
Course: Metro	ology & Quality Control	Credits: 1	
Teaching Sch	eme:	Teachers Assessment : 25 Marks	
Practical: 2 H	rs/week	Practical Examination: 25 Marks	
Objectives:1)Selection of	f tool and techniques for determin	ning geometry and dimensions.	
2) Design and	l calibration of measuring tools ar	nd equipment's.	
3) Application	n of Quality Control Techniques.		
4) Application	n of Quality Management Concep	t.	
	1) Determination of linear an using precision/non precision	d angular dimensions of given composite part n measuring instruments	
	2) Error determination with linear / angular measuring instruments.		
	 Verification of dimensions & geometry of given components using Mechanical & Pneumatic comparator. 		
	4) Identification of surfaces using optical flat/interferometers and measure surface roughness using surface roughness tester.		
Listof	 Determination of geometry & dimensions of given composite object using profile projector 		
Practicals	6) Measurement of various angles of single point cutting tool using tool maker's microscope.		
	7) Measurement of thread measuring machine.	parameters using floating carriage diameter	
	8) Measurement of spur gear parameters using Gear Tooth Vernier, Span, Gea Rolling Tester.		
	9) Determination of given g (CMM)	eometry using coordinate measuring machine	
	10) Determination of process ca control chart/ attribute chart.	pability from given components and plot variable	

- Continuous Assessment
- Performing the experiments in the laboratory/ Study experiment

• Oral examination conducted (internally) on the syllabus and the term work mentioned above

Practical Examination:

The practical examination shall consist of performing an experiment based on the practical work done during the course, the record of the experiments submitted by the candidate and Viva-voce based on the syllabus.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad			
	(Faculty of Science and Technology)		
	Syllabus of S. Y. B. Tech (Mechanical)		
Course Code:	MED224		
Course: Work	Shop Practice – II Credits: 1		
Teaching Sch	eme: Teachers Assessment : 25 Marks		
Practical: 2 H	rs/week Practical Examination: 25 Marks		
Objectives:			
1) The subject operations and as an i	in engineering fields. Also to develop work culture and ability to work in a team ndividual to acquire the skills.		
	Plumbing: Study of plumbing tools and their uses, standards accessories used in plumbing .Workshop diary – Sketch of job, List of various operations and tools. Practical: one job of thread cutting on G.I. Pipe		
List of Practicals	Pattern Making: Study of pattern making tools. Workshop diary – Sketch of job, List of various operations and tools. Practical: one job of pattern making.		
	Foundry: Study of sand moulding, Types of sands and moulding equipment's. Workshop diary – Sketch of job, List of various operations and tools. Practical: One job of moulding (Single or multi -piece pattern)		
	Welding: Study of arc welding machines, MIG welding machine and welding equipment's. Workshop diary – Sketch of job, List of various operations and tools. Practical: One job of welding individually or in group of students of any useful item of daily use using various welding operations.		

- Continuous Assessment
- Performing the experiments in the laboratory/ Study experiment
- Oral examination conducted (internally) on the syllabus and the term work mentioned above

Practical Examination:

The Practical Examination will comprise of two Jobs out of pattern making, foundry and welding. The job will be assessed by two examiners, one will be the internal and other will be external examiner appointed by university.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad				
(Faculty of Science & Technology)				
a a	Syllabus of S. Y. B. Tech. (All) Semester-III			
Course Co	de: B	SH225	Credits:1	
Course: La	ad V: Sekem	Development of Sk	IIIS-II Terrerusalus 50 mentes	
Prostical:	chem	le: wook	Termwork: 50 marks	
riactical.	2 III 5/ 1 Str	udents will be able to	apply communicative English Grammar in comm	unication
Objectives	2 Stu	idents will be able to	appry communicative English vocebulery	unication.
	2.Stt	idents will be able in	to propose and articulate words as well as	
	5.50	idents will be able	e to pronounce and articulate words as well as	sentences
	acc	curately.		
	4.Stu	idents will be able to	b understand and apply correct body language even	tually.
	5.Stu	idents will be able to	b develop life skills.	
	6.Stu	idents will be able to	o develop placeability skills and business correspon	ndence.
	Sr.	Section	Contents	Duration
List of	No.			
Practical	1	English	Structure of sentences, types of sentences,	4.1
Tucucui	1	Communicative	clauses, grammatical common errors in English	4 hrs
		Grannnar		
	2	Vocabulary	Usage of words in sentences, common errors in	2 has
	2	Building	spenning of words, synonyms, antonyms, phrases and idioms	2 III'S
			Syllables Stress intonation pronunciation of	
			words, phonetic transcription - conversion of	
			words to phonetic symbols and from phonetic	
	3	Phonetics	symbols to words, British and American	4 hrs
			English (basic difference in vocabulary,	
			spelling, pronunciation and structure), non-	
			verbal language.	
	4	Non-verbal	Posture, gesture, eye contact, facial expression,	2.1
	4	(Body language)	symbols	2 nrs
		(Douy language)	Personality development self analysis through	
			SWOT. Johari window interpersonal skills	
5		Soft Skills	perception and attitude, values and ethics.	2 hrs
			career planning.	
	Job application, resume writing, analytical and			
	6 Placeability		reasoning test, debate, group discussion, demo	4 hrs
			presentation and interview skills.	
	Business Letter writing at work place (hard copy and soft			
	7	Correspondence	copy), telephone and Email etiquette, report	2 hrs
		,	writing.	

List of	Sr. No.	Title	Author	Publication
Reference Books	1	The Essence of Effective Communication	Adrian Budday, Ron Ludlow and Fergus' Panton	Prentice Hall of India- Private Ltd.
	2	Communicating in Style	Yateendra Joshi	The energy Resource Institute
	3	Effective Technical Communication	Anne Eisenberge	Mc Graw Hill International Editors
	4	Professional Communication Skills	A. K. Jain, Pravin, S. R. Bhatia, A. M. Sheikh	S. Chand & Company Ltd.
	5	Business Communication	Urmila Rai, S. M. Rai	Himalya Publishing House
	6	Developing Communication Skills	Krishna Mohan and Meera Banerjee	Macmillan India Limited
	7	Better English Pronunciation	J.D.O'Connor.	Cambridge Publication
	8	Professional Communication Skill	Pravil S.R. Bhatia, S.Bhatia	S. Chand & Co
	9	Living English Structure	Allan Walter	Pearson Education India
	10	Communication Techniques & Skill	R.K. Chadha	
	11	Technical Communication- Principles and Practice	Meenakshi Raman & Sangeeta Sharma	Oxford University Press
	12	A course in Phonetics & Spoken English	J.Sethi,P.V.Dharmatma	PHI publication
	13	Communication Skills for Engineers	Sunita Mishra, C. Murli Krishna	Pearson Education
	14	Communication Skills	Leena Sen	PHI
	15	Technical Communication A Reader Centered Approach	Paul V. Anderson	Thomson Publication
	16	Grammar of Spoken and Written English	Dauglas Biber, Geoffrey Leech	Longman
	17	A Practical English Grammar	A.J. Thomson & A.V. Martinet	Oxford University Press
	18	Oxford English Grammar	Sydney Greenbaum	Oxford University Press
	19	Developing Graduate Employability Skills: Your Pathway to Employment	Mercy V. Chaita	Universal Publishers

		Dr. Babasaheb Ambedkar Maratl	nwada University, Aurangabad
(Faculty of Engineering & Technology)			
		Syllabus of S. Y. B. Tech. (N	Aechanical) Semester- IV
Course	Coo	le: BSH251A	Title: Engineering Mathematics -IV
Teachir	ıg S	cheme: 04Hrs/week	Class Test: 20 marks
Theory	: 03	Hrs/week	Theory Examination (Duration): 03 Hrs
Tutoria	1:0	l Hr/week	Theory Examination (Marks): 80
Credits	: 04		
Objectives	:	 To develop the mathematical sl variable and Vectors. To the local set of the set of	kills of the student related to Function of complex
		2) To study and apply various type	s of transforms and partial derivatives.
		3) To provide Numerical techniqu and technology.	es for solving the practical problem in engineering
Unit-I	:	Function of complex variable :	
		Introduction, Analytic function, coordinates, Harmonic function, of Line integral, Contour integral, Car Extension of Cauchy's theorem on Cauchy's residue theorem.	Cauchy-Riemann equation in Cartesian and polar orthogonal system, Integration in complex plane: uchy's integral theorem, Cauchy's integral formula, multiply connected region, Singularities, Residues, (12 Hrs)
Unit-II	:	Application of Complex Variable	
		Evaluation of real integrals: Integra semi-circle, Conformal Transforma	ation along unit circle and along the upper half ation, Bilinear transformation. (5Hrs)
Unit-III	:	Vector Integration:	
		Line integral, Surface integral, Gatheorem.	auss divergent theorem, Stoke's theorem, Green's (7 Hrs)
Unit-IV	:	Numerical Method:	
		Solution of algebraic and trans Lagrange's interpolation, Solution Elimination method, Gauss-Seid equations: Taylor series method, Fo	scendental equation, Newton Raphson method, on of linear simultaneous equation by Gauss del method, Solution of ordinary differential ourth order Runge-Kutta method.(10 Hrs)
Unit-V	:	Probability: Introduction, Probability Distribut Normal Distribution.	ions: Binomial Distribution, Poisson Distribution, (6 Hrs)

Unit-VI	:	Application of partial differential equation :	
		Solution of partial differential equation by method of separation variable,	
		Application to	
		i. Vibration of a string (The wave equation) (without proof)	
		ii. One dimensional heat flow (The diffusion equation) (without proof)	
		iii. Two dimensional heat flow (The diffusion equation) (without proof)	
		(8 Hrs)	
Reference	:	1. A Text Book of Applied Mathematics Volume-III BY P.N. Wartikar	
Books:		J.N.Wartikar, Pune Vidyarthi Griha Prakashan.	
		2. Advanced Engineering Mathematics BY H. K. Dass, S. Chand and Co. Ltd.	
		3. Higher Engineering Mathematics BY Dr. B. S. Grewal, Khanna Publishers.	
		4. Higher Engineering Mathematics BY B. V. Ramana, Tata McGraw-Hill	
		Publishing Co. Ltd.	
		5. Solution to Higher Engineering Mathematics Volume –III BY C. P. Gandhi	

Pattern of Question Paper:

The six/four units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum ten questions
- 2. Five questions in each section
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for ten marks each. The Question no.1 and 6 should be of objective nature.
- 4. Two questions of 15 marks each from remaining questions from each section A and B be asked to solve.

	Dr. Babasaheb Ambedkar Mara	thwada University, Aurangabad	
(Faculty of Science and Technology)			
	Syllabus of S. Y. B.	Tech (Mechanical)	
Course Code:	MED252		
Course: Mach	ine Drawing	Credits: 4	
Teaching Sch	eme:	Class Test: 20 Marks	
Theory: 4 Hrs	/week	Theory Examination: 80 Marks	
Tutorial: 0 H	/Week	Theory Examination (Duration): 4 Hrs	
 Objectives: 1) The subjective component 2) Interpret 	ct intends to make the students ts and their development. the industrial drawings and u	s understand various curves used in machine inderstand various conventions of machine	
component	ts.		
3) Visualize a	and construct the assembly of given	n set of individual components.	
Unit – I	Development of Surfaces Draw the development of surfaces for sections of Prisms, Cylinders, Pyramids and Cones.		
		08 Hrs	
Unit – II	Interpenetration of Solids Draw the curves of interpenetrati Prism, Pyramid, Cone and Spher	on of the surfaces of the solids such as Cylinder, e.	
		08 Hrs	
Unit – III	Auxiliary Views Study of auxiliary planes, projection of objects on auxiliary planes, completing the regular views with the help of given auxiliary views.		
	Engineering Curves		
Unit – IV Draw the various curves like ellipse, Parabola, Hyperbola, Involute, Cy Epicycloid, Hypocycloid and Helix.		llipse, Parabola, Hyperbola, Involute, Cycloid, lix.	
		04 Hrs	
Unit – V	Conventional Representations Representation of elements of m finishes, tolerances, Different typ Component Drawings: Bolts and welded joints, Knuckle Joint, Ri joints.	achine drawing: Engineering Materials, Surface bes of Screw threads. I Nuts, Locking devices, Keys and Cotter joints, veted joints, Shaft Couplings, Bearings and Pipe 10 Hrs	

	Preparing Assembly from given Component Details
	Constructing the Assembly drawing of Foot Step Bearing, Steam Stop Valve,
Unit – VI	Non-return Valve, Safety Valve, Cross Head, Piston and Connecting Rod, Lathe
	Tail Stock, Drill jig etc. From the given component details.
	10 Hrs

List of	List of Reference Books, e – Books, e – Journals				
Sr. No.	Title	Author	Publications		
1	Machine Drawing	N. D. Bhatt	Chartor Publication		
2	Machine Drawing	R. K. Dhawan	S. Chand and co.		
3	Machine Drawing	P. S. Gill	S. K. Katariya & sons		
4	Engineering Drawing	N. D. Bhatt	Chartor Publication		
5	Machine Drawing	Sidheswar and Sastry	TMH Publications		

Section A: Includes Unit I, II and III;

Section B: Includes Unit IV, V and VI.

Pattern of Question Paper:

The six units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum ten questions
- 2. Five questions in each section
- 3. Question no 1 to 5 from section A will be of 13 marks each and Question no 6 to 8 from section B will be of 12 marks each and Question no 9 and 10 from section B will be of 24 marks each and should cover complete syllabus of the respective section.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad			
(Faculty of Science and Technology)			
Syllabus of S. Y. B. Tech (Mechanical)			
Course Code:	MED253		
Course: Manu	Ifacturing Process – II	Credits: 4	
Teaching Sch	eme:	Class Test: 20 Marks	
Theory: 4 Hrs	s/week	Theory Examination: 80 Marks	
Tutorial: 0 Hi	r/Week	Theory Examination (Duration): 3 Hrs	
Objectives:			
1) On succes	ssful completion of this Cours	e, students should be able to conversant with	
convention	al and non-conventional machin	ing processes.	
	Metal Removal Processes		
	• Overview of Machining	g Technology, Classification of material removal	
	processes, Types of Ma	chining Operations	
	• Cutting Tools, Tool M	laterials, Single-Point Tool Geometry Tool life,	
	Tool wear		
	Cutting Conditions, Machine Tools and classification		
Unit – I	Economics of metal cutting		
	Theory of Metal Machining		
	Theory of Chip Format	ion in Metal Machining , The Orthogonal Cutting	
	Model		
	Force Relationships and	the Merchant Equation	
	Power and Energy Rela	tionships in Machining	
		08 Hrs	
	Machining Operations and M	achine Tools	
	Machining and part geo	metry	
	Turning and Related Operati	ons	
	Cutting Conditions in T	urning	
Unit – II	Operations Related to T	urning	
	• The Engine Lathe, Turn	ret, capstan, Semi/Automatic Lathe, CNC turning	
	center		
	Boring Machines		
		10 Hrs	
	Drilling and Related Operation	ons	
	Cutting Conditions in D	rilling	
Unit – III	• Geometry of twist drill		
	Operations Related to D	rilling	
	Drill Machines : Genera	l purpose, special purpose and Mass production	

	06 Hrs
	Milling
	Types of Milling Operations
	Cutting Conditions in Milling
	• Milling Machines : Types, construction and operations
	Other Machining Operations
TT *4 TT7	• shaping and planning
Unit - Iv	• broaching
	• Sawing
	Machining Operations For Special Geometries
	• Screw Threads : External Threads, Internal Threads
	• Gears : Form Milling, Gear Hobbing, Gear Shaping
	10 Hrs
	Grinding and Other Abrasive Processes
	Grinding :
	• Types of grain action in grinding
	• The Grinding Wheel: Abrasive Material, Grain Size, Bonding Materials,
	Wheel Structure and Wheel Grade, Grinding Wheel Specification
	• Analysis of the Grinding Process
T T 1 / T T	• Grinding Operations and Grinding Machines : Surface Grinding,
Unit – V	Cylindrical Grinding, Center less Grinding
	Related Abrasive Processes
	• Honing
	• Lapping
	• Super finishing
	 Polishing and Buffing
	10 Hrs
Unit – VI	Non-Conventional Machining Processes
	• Need, benefits, classification
	• Mechanism of metal removal, parameters, advantages disadvantages and applications of EDM, ECM, LBM, USM, AIM, WIM
	04 Hrs

List of Reference Books, e – Books, e – Journals				
Sr. No.	Title	Author	Publications	
1	Fundamentals of Modern Manufacturing	Mikell P. Groover	John Wiley & Sons	

ſ

2	Materials and Processes in Manufacturing	Degarmo, J. T. Black, Ronald A. Kohser	John Wiley & Sons
3	Production Technology	Jain R.K.	Khanna Publications
4	Workshop Technology	B. S. Raghuwanshi	Dhanpat Rai and Sons
5	Workshop Technology	Hajra Chaudhari	Dhanpat Rai and Sons
6	Manufacturing Processes	H. S Bawa	TMH Publications

Pattern of Question Paper:

The six units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum ten questions
- 2. Five questions in each section
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for ten marks each.
- 4. Two questions of 15 marks each from remaining questions from each section A and B be asked to solve.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad				
(Faculty of Science and Technology)				
	Syllabus of	S. Y. B.Tech (Mechanical)		
Course Code:	MED254			
Course: Appli	ed Thermodynamics	Credits: 4		
Teaching Sch	eme:	Class Test: 20 Marks		
Theory: 3 Hrs	/week	Theory Examination: 80 Marks		
Tutorial: 1 Hi	:/Week	Theory Examination (Duration): 3 Hrs		
Objectives:				
1) Prepare the	e student for effectively us	e of thermodynamics in the practice of engineering.		
2) To analyze	ed the vapourpower plant a	and its Sub-systems in which the working fluid is		
alternately	vaporized and condensed			
3) To assess t	he performance of air pow	ver cycles.		
4) To assess t	he performance of air con	npressor.		
	 Reacting Mixtures and Terminology of f Calorific value o Analysis of Com 	Combustion Tuels and Combustion If fuel bustion of fuel		
	 Theoretical and Actual Combustion Processes 			
Unit – I	 Enthalpy of Formation and Enthalpy of Combustion 			
	 Determination of air requirement for combustion 			
	 Flue gas analysis 			
	 Frue gas analysis Engineering applications 			
		08 Hrs		
	Boiler Performance an	d Roiler Draught		
	Boiler performance			
	Boiler efficiency			
	 Equivalent evance 	pration		
	 Boiler trial and heat balance 			
Unit – II	Boiler draught			
	Natural& Artific	al drafts		
	Chimney height			
	chining height,			
	Maximum draft a	and chimney efficiency		
		08 Hrs		
Steam Nozzle and Condensers				
Unit III	Steam nozzle			
Umi – 111	One dimensional	steady flow in nozzles		
	Choked flow			

	Off design operation of nozzle		
	• Effect of friction on nozzle		
	• Super saturation phenomenon in steam nozzles		
	Condenser		
	Classification of Condenser		
	Condenser Performance Measurement		
	Cooling Tower		
	08 Hrs		
	Steam Power Cycles		
	Carnot Cycle		
	• Rankine Cycle: The Ideal Cycle for Vapour Power Cycles		
	• Energy Analysis of the Ideal Rankine Cycle		
	• Effect of Pressure and Temperature on the Rankine Cycle,		
Unit – IV	Ideal Reheat Rankine Cycle		
	Ideal Regenerative Rankine Cycle		
	Open Feed water Heaters		
	Closed Feed water Heaters		
	• Case Study: Exergy Accounting of a Vapour Power Plant		
	08 Hrs		
	Air Standard Power Cycles		
	Air-Standard Assumptions		
	• The Carnot Cycle and Its Value in Engineering		
	Energy Analysis of the Otto Cycle		
Unit – V	• Energy Analysis of the Diesel Cycle		
	• Energy Analysis of the Duel Cycle		
	Comparison amongst Otto, Diesel and Dual Cycle		
	Second-Law Analysis of Air-standard Power Cycles		
	08 Hrs		
	Reciprocating Air Compressor		
	Introduction to the air Compressor		
	Constructional details of reciprocating Air Compressor.		
Unit VI	• Analysis of Single stage and multistage reciprocating air compressor with		
Omt - vi	and without clearance		
	• Perfect and Imperfect intercooling in air compressor		
	Optimization of multistage compressor work		
	08 Hrs		

List of Reference Books, e – Books, e – Journals			
Sr. No.	Title	Author	Publications
1	Applied Thermodynamics	P.K. Nag	TMH Publication
2	Applied Thermodynamic	Onkar Singh	New age Publication
3	Fundamentals of Thermodynamics	Claus Borgnakke and Richard e. Sonntag	John Wiley and Sons Publication
4	_Fundamentals of Engineering Thermodynamics	Michael J. Moran Howard N. Shapiro	John Wiley and Sons Publication
5	Thermodynamics: An engineering approach	Yunus A Cengel; Michael A Boles.	TMH Publication

Section A: Includes Unit I, II and III;

Section B: Includes Unit IV, V and VI.

Pattern of Question Paper:

The six units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum ten questions
- 2. Five questions in each section
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for ten marks each. The Question No. 1 and 6 should be objective in nature.
- 4. Two questions of 15 marks each from remaining questions from each section A and B be asked to solve.

(Faculty of Science and Technology) Syllabus of S. Y. B.Tech (Mechanical) Course Code: MED291 Course: Alternative Energy Sources Credits: 4 (Elective – I) Teaching Scheme: Class Test: 20 Marks Theory Examination: 80 Marks Theory Examination (Duration): 3 Hrs Objectives: 1) To impart the basic knowledge of various renewable energy resources and energy systems for power generation & power plants when the conventional sources are scarce in nature. 2) To explore society's present needs and future energy demands, examine conventional energy sources and systems and then focus on alternate energy sources. Introduction Renewable and non-renewable energy sources, their availability and growth in India; energy consumption as a measure of Nation's development; strategy for meeting the future energy requirements. 04 Hrs Solar radiation - beam and diffuse radiation; instruments used measurement of solar radiation; Principles, general description and design procedures of flat Plate and concentrating collectors and types, Solar energy storage systems - their types, characteristics and capacity; solar ponds. Applications of solar cells and batteries. 10 this Wind Energy <th colspan="4">Dr. Babasaheb Ambedkar Marathwada University, Aurangabad</th>	Dr. Babasaheb Ambedkar Marathwada University, Aurangabad				
Syllabus of S. Y. B. Tech (Mechanical) Course: Alternative Energy Sources Credits: 4 (Elective – I) Teaching Scheme: Class Test: 20 Marks Theory: 4 Hrs/week Theory Examination: 80 Marks Tutorial: 0 Hr/Week Theory Examination (Duration): 3 Hrs Objectives: 1) To impart the basic knowledge of various renewable energy resources and energy systems for power generation & power plants when the conventional sources are scarce in nature. 2) To explore society's present needs and future energy demands, examine conventional energy sources and systems and then focus on alternate energy sources. Introduction Renewable and non-renewable energy sources, their availability and growth in India; energy cosumption as a measure of Nation's development; strategy for meeting the future energy requirements. 04 Hrs Solar Energy Solar radiation - beam and diffuse radiation; instruments used measurement of solar radiation; Principles, general description and design procedures of flat Plate and concentrating collectors and types, Solar energy storage systems - their types, characteristics and capacity; solar ponds. Applications of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generation, solar cells and battreies.	(Faculty of Science and Technology)				
Solar Energy Unit – II Colume Solar Energy Solar radiation - beam and diffuse radiation; instruments used measurement of solar radiation - beam and diffuse radiation; solar energy stores of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generations. Unit – II Wind Energy Principle of wind energy conversion; Basic components of wind energy isources and systems and pupping; solar thermal power generation and water pupping; solar energy stores. Unit – II Solar Energy Solar radiation - beam and diffuse radiation; instruments used measurement of solar radiation and water pupping; solar energy storage systems of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pupping; solar thermal power generation; solar cells and batteries. Unit – II Wind Energy Principle of wind energy conversion; Basic components of wind energy ionversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of acrodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations. Unit – IV Orect Energy Measurement System • Magnetic Hydrodynamic (MHD) operation principle, types and working of different MHD systems – their relative merits; MHD materials and production of magnetic fields.		Syllabus of S. Y. B	.Tech (Mechanical)		
Course: Alternative Energy Sources Credits: 4 (Elective – I) Teaching Scheme: Class Test: 20 Marks Theory: 4 Hrs/week Theory Examination: 80 Marks Tutorial: 0 Hr/Week Theory Examination (Duration): 3 Hrs Objectives: 1) 10 inpart the basic knowledge of various renewable energy resources and energy systems for power generation & power plants when the conventional sources are scarce in nature. 2) To explore society's present needs and future energy demands, examine conventional energy sources and systems and then focus on alternate energy sources. Introduction Renewable and non-renewable energy sources, their availability and growth in India; energy consumption as a measure of Nation's development; strategy for meeting the future energy requirements. 04 Hrs Solar Energy Solar radiation - beam and diffuse radiation; instruments used measurement of solar radiation; Principles, general description and design procedures of flat Plate and concentrating collectors and types, Solar energy storage systems - their types, characteristics and capacity; solar ponds. Applications of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generation; solar cells and batteries. Unit – II Wind Energy Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal an	Course Code:	MED291			
(Elective – I) Teaching Scheme: Class Test: 20 Marks Theory: 4 Hrs/weck Theory Examination: 80 Marks Tutorial: 0 Hr/Week Theory Examination (Duration): 3 Hrs Objectives: 1) To impart the basic knowledge of various renewable energy resources and energy systems for power generation & power plants when the conventional sources are scarce in nature. 2) To explore society's present needs and future energy demands, examine conventional energy sources and systems and then focus on alternate energy sources. Introduction Renewable and non-renewable energy sources, their availability and growth in India; energy consumption as a measure of Nation's development; strategy for meeting the future energy requirements. 04 Hrs Solar radiation : beam and diffuse radiation; instruments used measurement of solar radiation; Principles, general description and design procedures of flat Plate and concentrating collectors and types, Solar energy storage systems - their types, characteristics and capacity; solar ponds. Applications of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generation; solar cells and batteries. Unit – III Wind Energy Vinit – III Wind Energy Unit – III Mind Energy Unit – III Mind Energy Unit – III On energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features	Course: Altern	native Energy Sources	Credits: 4		
Teaching Scheme: Class Test: 20 Marks Theory: 4 Hrs/week Theory Examination: 80 Marks Tutorial: 0 Hr/Week Theory Examination (Duration): 3 Hrs Objectives: 1) To impart the basic knowledge of various renewable energy resources and energy systems for power generation & power plants when the conventional sources are scarce in nature. 2) To explore society's present needs and future energy demands, examine conventional energy sources and systems and then focus on alternate energy sources. Introduction Renewable and non-renewable energy sources, their availability and growth in India; energy consumption as a measure of Nation's development; strategy for meeting the future energy requirements. 04 Hrs Solar Energy Solar radiation - beam and diffuse radiation; instruments used measurement of solar radiation principles, general description and design procedures of flat Plate and concentrating collectors and types, Solar energy storage systems - their types, characteristics and capacity; solar ponds. Applications of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generation; solar cells and batteries. Unit – III Wind Energy Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations.	(Elective – I)				
Theory: 4 Hrs/week Theory Examination: 80 Marks Tutorial: 0 Hr/Week Theory Examination (Duration): 3 Hrs Objectives: 1) To impart the basic knowledge of various renewable energy resources and energy systems for power generation & power plants when the conventional sources are scarce in nature. 2) To explore society's present needs and future energy demands, examine conventional energy sources and systems and then focus on alternate energy sources. Introduction Renewable and non-renewable energy sources, their availability and growth in India; energy consumption as a measure of Nation's development; strategy for meeting the future energy requirements. 04 Hrs Solar Energy Solar radiation - beam and diffuse radiation; instruments used measurement of solar radiation; Principles, general description and design procedures of flat Plate and concentrating collectors and types, Solar energy storage systems - their types, characteristics and capacity; solar ponds. Applications of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generation; solar cells and batteries. Unit – III Wind Energy Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations. Unit – IV Object En	Teaching Sch	eme:	Class Test: 20 Marks		
Tutorial: 0 Hr/Week Theory Examination (Duration): 3 Hrs Objectives: 1) To impart the basic knowledge of various renewable energy resources and energy systems for power generation & power plants when the conventional sources are scarce in nature. 2) To explore society's present needs and future energy demands, examine conventional energy sources and systems and then focus on alternate energy sources. Introduction Renewable and non-renewable energy sources, their availability and growth in India; energy consumption as a measure of Nation's development; strategy for meeting the future energy requirements. 04 Hrs Solar Energy Solar radiation - beam and diffuse radiation; instruments used measurement of solar radiation; Principles, general description and design procedures of flat Plate and concentrating collectors and types, Solar energy storage systems - their types, characteristics and capacity; solar ponds. Applications of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generation; solar cells and batteries. Unit – III Wind Energy Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations. Unit – IV Direct Energy Measurement System • Magnetic Hydrodynami	Theory: 4 Hrs	/week	Theory Examination: 80 Marks		
Objectives: 1) To impart the basic knowledge of various renewable energy resources and energy systems for power generation & power plants when the conventional sources are scarce in nature. 2) To explore society's present needs and future energy demands, examine conventional energy sources and systems and then focus on alternate energy sources. Introduction Renewable and non-renewable energy sources, their availability and growth in India; energy consumption as a measure of Nation's development; strategy for meeting the future energy requirements. 04 Hrs Solar Energy Solar radiation - beam and diffuse radiation; instruments used measurement of solar radiation; Principles, general description and design procedures of flat Plate and concentrating collectors and types, Solar energy storage systems - their types, characteristics and capacity; solar ponds. Applications of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generation; solar cells and batteries. Unit – III Wind Energy Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations. Unit – IV Direct Energy Measurement System	Tutorial: 0 Hr	/Week	Theory Examination (Duration): 3 Hrs		
 1) To impart the basic knowledge of various renewable energy resources and energy systems for power generation & power plants when the conventional sources are scarce in nature. 2) To explore society's present needs and future energy demands, examine conventional energy sources and systems and then focus on alternate energy sources. Introduction Renewable and non-renewable energy sources, their availability and growth in India; energy consumption as a measure of Nation's development; strategy for meeting the future energy requirements. 04 Hrs Solar Energy Solar radiation - beam and diffuse radiation; instruments used measurement of solar radiation; Principles, general description and design procedures of flat Plate and concentrating collectors and types, Solar energy storage systems - their types, characteristics and capacity; solar ponds. Applications of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generation; solar cells and batteries. 10 Hrs Wind Energy Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations. 10 Hrs Unit – IV Magnetic Hydrodynamic (MHD) operation principle, types and working of different MHD systems – their relative merits; MHD materials and production of magnetic fields. 	Objectives:				
for power generation & power plants when the conventional sources are scarce in nature. 2) To explore society's present needs and future energy demands, examine conventional energy sources and systems and then focus on alternate energy sources. Introduction Renewable and non-renewable energy sources, their availability and growth in India; energy consumption as a measure of Nation's development; strategy for meeting the future energy requirements. 04 Hrs Solar Energy Solar radiation - beam and diffuse radiation; instruments used measurement of solar radiation; Principles, general description and design procedures of flat Plate and concentrating collectors and types, Solar energy storage systems - their types, characteristics and capacity; solar ponds. Applications of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generation; solar cells and batteries. 10 Hrs Unit – III	1) To impart	the basic knowledge of various	renewable energy resources and energy systems		
 2) To explore society's present needs and future energy demands, examine conventional energy sources and systems and then focus on alternate energy sources. Introduction Renewable and non-renewable energy sources, their availability and growth in India; energy consumption as a measure of Nation's development; strategy for meeting the future energy requirements. O4 Hrs Solar Energy Solar radiation - beam and diffuse radiation; instruments used measurement of solar radiation; Principles, general description and design procedures of flat Plate and concentrating collectors and types, Solar energy storage systems - their types, characteristics and capacity; solar ponds. Applications of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generation; solar cells and batteries. 10 Hrs Wind Energy Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations. ID Hrs Magnetic Hydrodynamic (MHD) operation principle, types and working of different MHD systems – their relative merits; MHD materials and production of magnetic fields. 	for power g	generation & power plants when t	he conventional sources are scarce in nature.		
sources and systems and then focus on alternate energy sources. Introduction Renewable and non-renewable energy sources, their availability and growth in India; energy consumption as a measure of Nation's development; strategy for meeting the future energy requirements. 04 Hrs Solar Energy Solar radiation - beam and diffuse radiation; instruments used measurement of solar radiation; Principles, general description and design procedures of flat Plate and concentrating collectors and types, Solar energy storage systems - their types, characteristics and capacity; solar ponds. Applications of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generation; solar cells and batteries. Unit – III Wind Energy Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations. Unit – IV Direct Energy Measurement System • Magnetic Hydrodynamic (MHD) operation principle, types and working of different MHD systems – their relative merits; MHD materials and production of magnetic fields.	2) To explore	society's present needs and futur	e energy demands, examine conventional energy		
Introduction Renewable and non-renewable energy sources, their availability and growth in India; energy consumption as a measure of Nation's development; strategy for meeting the future energy requirements. Unit - I Solar Energy Solar radiation - beam and diffuse radiation; instruments used measurement of solar radiation; Principles, general description and design procedures of flat Plate and concentrating collectors and types, Solar energy storage systems - their types, characteristics and capacity; solar ponds. Applications of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generation; solar cells and batteries.Unit - IIIWind Energy Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations.Unit - IVDirect Energy Measurement System • Magnetic Hydrodynamic (MHD) operation principle, types and working of different MHD systems - their relative merits; MHD materials and production of magnetic fields.	sources and	d systems and then focus on alterr	nate energy sources.		
Unit – I Renewable and non-renewable energy sources, their availability and growth in India; energy consumption as a measure of Nation's development; strategy for meeting the future energy requirements. 04 Hrs 04 Hrs Solar Energy Solar radiation - beam and diffuse radiation; instruments used measurement of solar radiation; Principles, general description and design procedures of flat Plate and concentrating collectors and types, Solar energy storage systems - their types, characteristics and capacity; solar ponds. Applications of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generation; solar cells and batteries. Unit – III Wind Energy Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations. Unit – IV Oirect Energy Measurement System • Magnetic Hydrodynamic (MHD) operation principle, types and working of different MHD systems – their relative merits; MHD materials and production of magnetic fields.		Introduction			
Unit – I India; energy consumption as a measure of Nation's development; strategy for meeting the future energy requirements. 04 Hrs Solar Energy Solar radiation - beam and diffuse radiation; instruments used measurement of solar radiation; Principles, general description and design procedures of flat Plate and concentrating collectors and types, Solar energy storage systems - their types, characteristics and capacity; solar ponds. Applications of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generation; solar cells and batteries. Unit – III Wind Energy Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations. Unit – IV Oirect Energy Measurement System • Magnetic Hydrodynamic (MHD) operation principle, types and working of different MHD systems – their relative merits; MHD materials and production of magnetic fields.		Renewable and non-renewable	energy sources, their availability and growth in		
uneeting the future energy requirements. 04 Hrs Solar Energy Solar radiation - beam and diffuse radiation; instruments used measurement of solar radiation; Principles, general description and design procedures of flat Plate and concentrating collectors and types, Solar energy storage systems - their types, characteristics and capacity; solar ponds. Applications of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generation; solar cells and batteries. Unit – III Wind Energy Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations. Unit – IV Direct Energy Measurement System • Magnetic Hydrodynamic (MHD) operation principle, types and working of different MHD systems – their relative merits; MHD materials and production of magnetic fields.	Unit – I	India; energy consumption as a measure of Nation's development; strategy for			
04 Hrs Solar Energy Solar radiation - beam and diffuse radiation; instruments used measurement of solar radiation; Principles, general description and design procedures of flat Plate and concentrating collectors and types, Solar energy storage systems - their types, characteristics and capacity; solar ponds. Applications of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generation; solar cells and batteries. 10 Hrs Wind Energy Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations. 10 Hrs Unit – IV Direct Energy Measurement System • Magnetic Hydrodynamic (MHD) operation principle, types and working of different MHD systems – their relative merits; MHD materials and production of magnetic fields.		meeting the future energy requir	rements.		
Solar EnergySolar radiation - beam and diffuse radiation; instruments used measurement of solar radiation; Principles, general description and design procedures of flat Plate and concentrating collectors and types, Solar energy storage systems - their types, characteristics and capacity; solar ponds. Applications of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generation; solar cells and batteries.Unit – IIIWind Energy 			04 Hrs		
Solar radiation - beam and diffuse radiation; instruments used measurement of solar radiation; Principles, general description and design procedures of flat Plate and concentrating collectors and types, Solar energy storage systems - their types, characteristics and capacity; solar ponds. Applications of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generation; solar cells and batteries.Unit – IIIWind Energy Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations.Unit – IVDirect Energy Measurement System • Magnetic Hydrodynamic (MHD) operation principle, types and working of different MHD systems – their relative merits; MHD materials and production of magnetic fields.		Solar Energy			
Unit – IISolar radiation; Principles, general description and design procedures of flat Plate and concentrating collectors and types, Solar energy storage systems - their types, characteristics and capacity; solar ponds. Applications of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generation; solar cells and batteries.Unit – IIIWind Energy Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations.Unit – IVDirect Energy Measurement System•Magnetic Hydrodynamic (MHD) operation principle, types and working of different MHD systems – their relative merits; MHD materials and production of magnetic fields.		Solar radiation - beam and diff	use radiation; instruments used measurement of		
Unit – IIand concentrating collectors and types, solar energy storage systems - their types, characteristics and capacity; solar ponds. Applications of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generation; solar cells and batteries.Unit – IIIWind Energy Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations.Unit – IVDirect Energy Measurement System • Magnetic Hydrodynamic (MHD) operation principle, types and working of different MHD systems – their relative merits; MHD materials and production of magnetic fields.		solar radiation; Principles, gener	al description and design procedures of flat Plate		
Unit – II types, characteristics and capacity; solar ponds. Applications of solar energy in water, space and process heating, solar refrigeration and air conditioning; water desalination and water pumping; solar thermal power generation; solar cells and batteries. 10 Hrs Wind Energy Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations. Unit – IV Direct Energy Measurement System • Magnetic Hydrodynamic (MHD) operation principle, types and working of different MHD systems – their relative merits; MHD materials and production of magnetic fields.		and concentrating collectors and	ite solar energy storage systems - their		
Unit – III Wind Energy Unit – III Wind Energy Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations. In Hrs Unit – IV In Hrs Unit – IV	Unit - II	types, characteristics and capac	ity; solar ponds. Applications of solar energy in		
Unit – III Wind Energy Unit – III Wind Energy Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations. 10 Hrs Unit – IV Unit – IV		water, space and process heating, solar retrigeration and air conditioning; water			
Id Hrs Id Hrs Wind Energy Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations. Unit – IV Direct Energy Measurement System • Magnetic Hydrodynamic (MHD) operation principle, types and working of different MHD systems – their relative merits; MHD materials and production of magnetic fields.		betteries	; solar mermai power generation, solar cens and		
Unit – III Wind Energy Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations. 10 Hrs Unit – IV Unit – IV Object Energy Measurement System • Magnetic Hydrodynamic (MHD) operation principle, types and working of different MHD systems – their relative merits; MHD materials and production of magnetic fields.		batteries.	10 Uno		
Unit – IIIPrinciple of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations.Unit – IVDirect Energy Measurement System• Magnetic Hydrodynamic (MHD) operation principle, types and working of different MHD systems – their relative merits; MHD materials and production of magnetic fields.		Wind Energy	10 111 5		
Unit – III Interpret of while energy conversion, basic components of while energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations. 10 Hrs Unit – IV 0 Magnetic Hydrodynamic (MHD) operation principle, types and working of different MHD systems – their relative merits; MHD materials and production of magnetic fields.		Principle of wind energy co	nversion: Basic components of wind energy		
Unit – III conversion systems, which mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations. 10 Hrs Unit – IV 0 Magnetic Hydrodynamic (MHD) operation principle, types and working of different MHD systems – their relative merits; MHD materials and production of magnetic fields.		conversion systems: wind	mill components various types and their		
Unit – IV Constructional relatives, design constructions of nonzontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades and estimation of power output; wind data and site selection considerations. 10 Hrs Unit – IV • Magnetic Hydrodynamic (MHD) operation principle, types and working of different MHD systems – their relative merits; MHD materials and production of magnetic fields.	Unit _ III	constructional features: design	considerations of horizontal and vertical axis		
Unit – IV Magnetic Hydrodynamic (MHD) operation principle, types and working of different MHD systems – their relative merits; MHD materials and production of magnetic fields.		wind machines: analysis of aer	odynamic forces acting on wind mill blades and		
Unit – IV Direct Energy Measurement System • Magnetic Hydrodynamic (MHD) operation principle, types and working of different MHD systems – their relative merits; MHD materials and production of magnetic fields.		estimation of power output: win	d data and site selection considerations		
Unit – IV Direct Energy Measurement System • Magnetic Hydrodynamic (MHD) operation principle, types and working of different MHD systems – their relative merits; MHD materials and production of magnetic fields.	10				
 Unit – IV Magnetic Hydrodynamic (MHD) operation principle, types and working of different MHD systems – their relative merits; MHD materials and production of magnetic fields. 		Direct Energy Measurement S	vstem		
Unit – IV of different MHD systems – their relative merits; MHD materials and production of magnetic fields.		Magnetic Hydrodynamia	c (MHD) operation principle, types and working		
production of magnetic fields.	Unit – IV	of different MHD syste	ms – their relative merits: MHD materials and		
		production of magnetic f	ields.		

	• Themes electric conceptant. Themes electric effects and metanicles			
	• mermo-electric generators: mermo-electric effects and materials;			
	thermo-electric devices and types of thermo-electric generators; thermo-			
	electric refrigeration.			
	• Thermionic generators: Thermo ionic emission and materials; working			
	principle of thermionic convertors.			
	• Fuel Cells: thermodynamic aspects; types, components and working of			
	fuel cells.			
	12 Hrs			
	Biomass Conversion Technologies			
	• Bio-mass: Concept of bio-mass conversion, photo-synthesis and bio-			
	gasification			
Unit V	• Die and plants their type's constructional factures and functioning.			
$\operatorname{Om} - \mathbf{v}$	• Bio gas plants - their type's constructional features and functioning;			
	digesters and their design; Fuel properties of bio gas and community bio			
	gas plants.			
	06 Hrs			
	Miscellaneous Non-Conventional energy Systems			
	• Geothermal: Sources of geothermal energy - types, constructional			
	features and associated prime movers.			
T T 1 / T / T	• Tidal and wave energy: Basic principles and components of tidal and			
Unit – VI	wave energy plants: single basin and double basin tidal power plants:			
	conversion devices Advantages/disadvantages and applications of above			
	conversion devices Advantages/disadvantages and applications of above			
	menuoned energy systems.			
	06 Hrs			

List of Reference Books, e – Books, e – Journals			
Sr. No.	Title	Author	Publications
1	Non-conventional Energy Sources	G.D. Rai	Khanna Publishers
2	Non-Conventional Energy Resources	B. H. Khan	Tata McGraw-Hill Education
3	Solar Energy : Fundamentals and Applications	H.P. Garg and Jai Prakash	Tata McGraw Hill
4	Solar Energy: Principles of Thermal Collection and Storage	S.P. Sukhatme	Tata McGraw Hill
5	Solar Engineering of Thermal Processes	John A. Duffic and W. A. Beckman	Tata McGraw Hill
6	Energy Conversion	S. L. Sheldon	Prentice Hall

7	Fuel Cells	O. M. Bockris and S.	McGrow Hill
/	Tuer cens	Srinivasan	

Pattern of Question Paper:

The six units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum ten questions
- 2. five questions in each section
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for ten marks each. The Question No. 1 and 6 should be objective in nature.
- 4. Two questions of 15 marks each from remaining questions from each section A and B be asked to solve.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad					
	(Faculty of Science and Technology)				
	Syllabus of S. Y. B	.Tech (Mechanical)			
Course Code:	MED292				
Course: Adva	nced Solid Mechanics	Credits: 4			
(Elective – I)					
Teaching Sch	eme:	Class Test: 20 Marks			
Theory: 4 Hrs	/week	Theory Examination: 80 Marks			
Tutorial: 0 Hr	/Week	Theory Examination (Duration): 3 Hrs			
Objectives:					
1) To provide	the basic concepts and principle of	of elasticity and its applications			
2) To provide	the knowledge and skills in the	field mechanics of solids and its application to			
structural a	nalysis, machine design and mate	rial processing.			
	Introduction to Theory of Elas	ticity			
	Stress equation of equilibrium,	Compatibility equations, Stress-Strain Relations,			
TI:4 T	Solution of elasticity equations s	stress function approach, Principal stresses, stress			
01111 – I	invariants, three-dimensional Mohr's circle, octahedral stresses, hydrostatic and				
	deviatoric stresses.				
		08 Hrs			
	Bending of Beams				
	Bending of symmetrical and u	nsymmetrical straight beams, Shear stresses in			
Unit – II	beams shear center and shear flow, Elastic stability - Euler's buckling load,				
	Eigen-value problem.				
		10 Hrs			
	Elastic Materials				
	Types of Materials, Elastic Mate	erials: Introduction, Theory of elastic constants of			
Unit – III	Isotropic material, Orthotropic material, Transversely Isotropic material, An-				
	isotropic material, Hyperelastic	material.			
06 H					
	Energy Methods				
Unit IV	Principle of superposition, Ela	stic strain energy and Complementary energy,			
$U \Pi I - I V$	Reciprocal relations, Principle of	f virtual work, Kirchhoff's theorem.			
06 Hrs					
	Theories of Elastic Failure				
	Maximum Principal stress the	ory (Rankine), Maximum shear stress theory			
Unit – V	(Guest - Tresca), Maximum Prin	ncipal strain (Saint - venant) Theory, Total strain			
	energy per unit volume (Haigh) Theory, Shear strain energy per unit volume			
	Theory (Von – Mises & Hencky).			

	10 Hrs
	Experimental Measurement of Stress
	Photoelasticity: Stress optic law – effect of stressed model in plane and circular
	polariscopes, Isoclinics & Isochromatics, Fringe order determination Fringe
Unit – VI	multiplication techniques, Calibration photoelastic model materials.
	Introduction to Non-destructive Test techniques, Applications of Strain gauge
	and Strain rosettes.
	08 Hrs

List of Reference Books, e – Books, e – Journals			
Sr. No.	Title	Author	Publications
1	Mechanics of Materials	Timoshenko, S.P., and Gere, J.M.,	CBS Publishers
2	Advanced Mechanics of Solids	Srinath L. S.	Tata McGraw-Hill
3	Strength of Materials	R. K. Bansal	Laxmi Prakashan
4	An Introduction to the Mechanics of Solids	Crandall, S.H., Dahl, N.C., and Lardner, T.J	Tata McGraw-Hill
5	Elements of Strength of Materials	Timoshenko	D. Van Nostrand Company Inc.

Section A: Includes Unit I, II and III;

Section B: Includes Unit IV, V and VI.

Pattern of Question Paper:

The six units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum ten questions
- 2. Five questions in each section
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for ten marks each. The Question No. 1 and 6 should be objective in nature.
- 4. Two questions of 15 marks each from remaining questions from each section A and B be asked to solve.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad		
(Faculty of Science and Technology)		
Syllabus of S. Y. B.Tech (Mechanical)		
Course Code:	MED293	
Course: Total	Quality Management	Credits: 4
(Elective – I)		
Teaching Sch	eme:	Class Test: 20 Marks
Theory: 4 Hrs	/week	Theory Examination: 80 Marks
Tutorial: 0 Hr	/Week	Theory Examination (Duration): 3 Hrs
Objectives:		
1) To know the	e basics and philosophies of TQM.	
2) To illustrate	the use of total quality control tools	
3) To understa	nd the concepts quality circles and ka	aizen.
4) To understa	nd the techniques of JIT.	
5) Concepts of	re-engineering, BPR	
	Introduction to TQM	
	Customer orientation, continuous	improvement, Quality, Productivity and flexibility,
Unit – I	approaches and philosophies of TQM, Quality Awards, Strategic Quality Management,	
	TQM and corporate culture.	00 M
		08 Hrs
	Total Quality Control	the Histoprome Denote charts Course and Effect
Unit II	Basic analytical tools-check sheets, Histograms, Pareto charts, Cause and Effect diagrams flow charts scatter diagrams run charts Cost of Quality; Quality cost	
01111 – 11	measurement Reliability and failur	e analysis
	Quality Circles	
	Introduction, implementation, form	nation, intangible impact of quality circle, inhibiting
Unit – III	factors, Kaizen: Introduction,	he Japanese style of management & Kaizen
	implementation, modeling kaizen p	rocess and benefits.
		08 Hrs
	Just In Time Manufacturing	
	Introduction, advantages, approach	ch to quality, importance of KANBAN in JIT,
Unit – IV	Introduction to ISO 9000 and	14000 series of Quality Standard, Certification
	Requirements, Evolving Standards.	
		08 Hrs
	Business Process Re-engineeri	ng
	Re-Engineering, definition, strate	egic value added process, re-engineering trends,
Unit – V	incremental improvement program	, stages of re-engineering, preparation identification,
	vision, technical and social design,	transformation, Differentiation of BPR.
		08 Hrs

	TQM Principles				
	Leadership-Strategic Qual	ity Planning,	Employee	Involvement,	Motivation,
Unit – VI	Empowerment. Team and to	am work, Kaize	en, PDCA cy	cle, 5S. Supplier	partnership,
	Supplier selection, Supplier	ating.			
					08 Hrs

List of	List of Reference Books, e – Books, e – Journals				
Sr. No.	Title	Author	Publications		
1	Out of crisis	W. Edward Deming	MIT publishing		
2	What is Total Quality Control? The Japanese way	Ishikawa & Lu	Prentice Hall		
3	Total Quality Management	D. J. Tally	ASQC Quality Press		
4	Total Quality Control	A. V. Feigenbaum	McGraw Hill International Editions, USA		
5	Quality Control Handbook	J. M. Juran	McGraw Hill Book Company, USA		
6	Kaizen: The key to Japan's Competitive Success	Masaaki Imai	McGraw Hill International Editions, USA		

Pattern of Question Paper:

The six units in the syllabus shall be divided in two equal parts i.e. 3 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum ten questions
- 2. Five questions in each section
- 3. Question no 1 from section A and Question no 6 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for ten marks each.
- 4. Two questions of 15 marks each from remaining questions from each section A and B be asked to solve.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad		
(Faculty of Science and Technology)		
Syllabus of S. Y. B.Tech (Mechanical)		
Course Code:	MED255	
Course: Electr	rical Technology	Credits: 2
Teaching Sch	eme:	Class Test: 10 Marks
Theory: 2 Hrs	/week	Theory Examination: 40 Marks
Tutorial: 0 H	/Week	Theory Examination (Duration): 2 Hrs
Objectives:		
1) For Electri characteris	c Machines to study various basic tics, losses and advantages disadva	c AC and DC machines: construction, operation, antages.
	D. C. Generators	
Unit – I	Operating principle, Construct Armature reaction and comm Numerical	tion, EMF equation, Methods of excitation, nutation, Characteristics, Losses, application,
		04 Hrs
Unit – II	D. C. Motors Principle of operation, Sign Characteristics, Starting and spec	ificance of back EMF, Torque equation, ed control, application, Numerical 04 Hrs
Unit – III	Induction Motor Three phase Induction Motor-C and Slip ring type, Torque equa Speed control, efficiency, Nume	Operating principle, Construction, Squirrel cage ation, Torque-slip Characteristics, Power stages, rical 04 Hrs
	Single Phase Induction Motor	
Unit – IV	Construction, Double field rev starting, Types—Capacitor start	volving theory, Making Induction motor self, Capacitor start & run ,shaded pole, Repulsion 04 Hrs
Unit – V	Special Machines Working principle and applicati (Variable reluctance type, perma	on of Servomotor (DC and AC), Stepper motor nent magnet type and Hybrid type) 04 Hrs
Unit – VI	Transformer Working Principle and Constructions (Y/Y, Y)	uction of Three phase Transformer- Various $(\Delta, \Delta/Y, \Delta/\Delta)$ (Only theoretical treatment) 04 Hrs

List of	List of Reference Books, e – Books, e – Journals				
Sr. No.	Title	Author	Publications		
1	Electrical Machines	Nagrath Kothari	TMH Publications		
2	Electrical Technology	B. L. Theraja	S. Chand Publications		
3	ABC of Electrical Engineering	B. L. Theraja	S. Chand Publications		
4	Electrical Technology	H. Cotton	Pitman and Sons Publication		
5	Principle of Electrical Machines	V. K. Mehta	S. Chand Publications		

Pattern of Question Paper:

The four units in the syllabus shall be divided in two equal parts i.e. 2 units respectively. Question paper shall be set having two sections A and B. Section A questions shall be set on first part and Section B questions on second part. Question paper should cover the entire syllabus.

- 1. Minimum Eight questions
- 2. Four questions in each section
- 3. Question no 1 from section A and Question no 5 from section B be made compulsory and should cover complete syllabus of the respective section and should be set for six marks each. The Question no.1 and 5 should be objective in nature.
- 4. Two questions of 07 marks each from remaining questions from each section A and B be asked to solve.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad			
(Faculty of Science and Technology)			
	Syllabus of S. Y. B.Tech (Mechanical)		
Course Code:	MED271		
Course: Mach	ine Drawing Credits: 1		
Teaching Sche	eme: Teachers Assessment : 25 Marks		
Practical: 2 H	rs/week Practical Examination: 25 Marks		
Objectives:			
1) The subject	ct intends to make the students understand various curves used in machine		
component	s and their development.		
2) Interpret	the industrial drawings and understand various conventions of machine		
component	8.		
3) Visualize a	nd construct the assembly of given set of individual components.		
4) Learn to us	e drafting software to draw machine components.		
 Using full size sheet (A-1) draw four problems of each on unit 1, 2 and 3 Using full size sheet (A-1) draw four problems on different types of curve for unit no. 4 			
List of	OR		
Practicals	Draw various machine components using any drafting software for unit no.5		
	4) Using full size sheet (A-1) draw Assembly drawing of any one assembly given in unit no.6		
	OR		
	Draw Assembly drawing of any one assembly given in unit no.6 by using any drafting software		

- Continuous Assessment
- Performing the experiments in the laboratory/ Study experiment
- Oral examination conducted (internally) on the syllabus and the term work mentioned above

Practical Examination:

The practical examination shall consist of performing an experiment based on the practical work done during the course, the record of the experiments submitted by the candidate and Viva-voce based on the syllabus.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad			
(Faculty of Science and Technology)			
	Syllabus of S. Y. B.T	ech (Mechanical)	
Course Code:	: MED272		
Course: Appli	ied Thermodynamics	Credits: 1	
Teaching Sch	ieme:	Feachers Assessment : 25 Marks	
Practical: 2 H	Irs/week I	Practical Examination: 25 Marks	
Objectives:			
1) To Study I	Principle, construction and working of	of different thermal systems.	
2) To assess t	the energy performance of thermal sy	ystems.	
	1) To Study Principle, Construction and Working of Bomb Calorimeter		
	2) To study and Demonstration of Hero's reaction turbine.		
	3) To Study Principle, Construction and Working of Steam Engine.		
	4) To Study Principle, Construction and Working of Boilers Mountings.		
	5) To Study Principle, Construction and Working of Boiler Accessories.		
L ist of	6) To Study energy balance [Heat Utilization] using any Boiler Model.		
Practicals	7) To Study ignition timing mechanism [Ignition System] for Otto cycle [Petrol Engine]		
	8) To Study the ways of energy conservation by waste minimization.		
	9) Performance of Energy assessment of lighting Systems.		
	10) Performance of Energy assessment of reciprocating air compressors		
	11) Case Study: Exergy Accounting of any Thermal System.		
	12) Visit to Thermal Power Station	and Report related to it.	

- Continuous Assessment
- Performing the experiments in the laboratory/ Study experiment
- Oral examination conducted (internally) on the syllabus and the term work mentioned above

Practical Examination:

The practical examination shall consist of performing an experiment based on the practical work done during the course, the record of the experiments submitted by the candidate and Viva-voce based on the syllabus.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad		
(Faculty of Science and Technology)		
	Syllabus of S. Y. B	.Tech (Mechanical)
Course Code:	MED273	
Course: Work	Shop Practice – III	Credits: 1
Teaching Sch	eme:	Teachers Assessment : 25 Marks
Practical: 2 H	rs/week	Practical Examination: 25 Marks
Objectives:1) The subject intends to make the students aware and understand the basic manufacturing operations in engineering fields. Also to develop work culture and ability to work in a team and as an individual to acquire the skills.		
	Turning Shop: Study of Different operations to be carried on lathe machine using tail stock, taper turning methods (Calculations), internal and external threading, and facing finishing cuts. Workshop diary – Sketch of job, List of various operations and tools Practical: Preparing two jobs on lathe machine performing all above operations.	
List of Practicals	Milling: Study of vertical and horizontal operations to be carried on mill List of various operations and to group of students i.e. Gear bla involving calculations for indexi	milling machines, milling cutters and different ling machine. Workshop diary – Sketch of job, ols Practical: Preparing a job individually or in a ank by turning, External milling of gear teeth ng.
	Drilling or Boring: Study of different types of drilli Workshop diary – Sketch of job Preparing a job individually or internal splines cuts on slottin finishing.	ing machines, Drill and single point boring tool, b, List of various operations and tools. Practical: in a group of students based on drilling, boring ng machine and surface grinding for surface

- Continuous Assessment
- Performing the experiments in the laboratory/ Study experiment
- Oral examination conducted (internally) on the syllabus and the term work mentioned above

Practical Examination:

The Practical Examination will comprise of two Jobs out of pattern making, foundry and welding. The job will be assessed by two examiners, one will be the internal and other will be external examiner appointed by university.

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad				
	(Faculty of Science and Technology)			
	Syllabus of S. Y. B. Tech (Mechanical)			
Course Code:	MED274			
Course: Electr	rical Technology Credits: 1			
Teaching Sch	eme: Teachers Assessment : 50 Marks			
Practical: 2 H	rs/week			
Objectives:				
1) For Electr	The MachinesTo study various basic AC and DC machines: construction,			
operation,	characteristics, losses and advantages disadvantages.			
	1) To study DC Shunt motor – 3 Point starter			
	2) To study star/delta starter for three phase squirrel cage induction motor.			
	3) Internal & external characteristics of DC Shunt generator.			
	4) Magnetizing characteristics of DC Shunt generator.			
List of	5) Speed control of DC shunt motor			
Practicals	6) No load Test (Swinburne's Test) on DC Shunt motor.			
	7) To perform speed reversal of DC Shunt motor.			
	8) Speed control of three phase induction motor			
	9) To perform speed reversal of three phase induction motor			
	10) Open Circuit (OC) and Short Circuit Test on single Phase transformer			

- Continuous Assessment
- Performing the experiments in the laboratory/ Study experiment
- Oral examination conducted (internally) on the syllabus and the term work mentioned above

Dr. Babasaheb Ambedkar Marathwada University, Aurangabad			
(Faculty of Science and Technology)			
Syllabus of S. Y. B.Tech (Mechanical)			
Course Code:	MED275		
Course: Devel	lopment of Skills – III Credits: 1		
Teaching Sch	eme: Teachers Assessment : 50 Marks		
Practical: 2 H	rs/week		
Objectives:			
1) To underst	and importance of problem solving issues in professional way.		
2) To learn ef	fective utilization of problem solving tools.		
3) To underst	and entrepreneurship skills.		
4) To learn ef	tective ways of technical writing skills.		
List of Practicals	1) Problems and its Resolutions Definition, types of problems, Collaboration, benefits of collaboration, collaborative problem solving, Evaluation of Conflicts, defusing conflicts, conflicts resolution styles, Effective Conflict Communications.		
	02 Hrs		
	2) Problem Solving Techniques [Old Tools]		
Tally sheets, Pareto Diagram, Cause and effect Diagrams, Histogr			
	Stratification, Scatter Diagram, Control Charts		
	02 Hrs		
	3) Problem Solving Techniques [New Tools]		
Affinity Diagram, Relationship diagram, Tree Diagram, Matrix Diagram/ Mat			
	Data Analysis, Arrow Diagram, Process Decision Program Chart.		
02 H			
	4) Problem Solving Strategies [Brain Storming]		
	Introduction to brainstorming, why to use it, Group brainstorming, preparation of the group, Presentation of problem, guiding the discussion, concluding the discussion, taking action on the results generated, recording the results after implementations.		
	02 Hrs		
	5) Flow Charts		
	Introduction, types: Document Flow charts, Data Flow Charts, System Flow		
	charts, Programme flow charts, Symbols and lines used for generation of the		
	02 Hrs		
6) Entrepreneurship			
	Definition, need, Successful examples of renowned entrepreneurs		

02 Hrs
7) Personality Development I
Positive Attitude, Will Power, Patience and Creativity
02 Hrs
8) Personality Development II
Emotional quotient, IQ, Group Discussion
02 Hrs
9) Marketing Management
Introduction, brand audit, marketing strategy, implementation of planning,
Reporting, measurement, feedback and control systems International marketing
management
02 Hrs
10) Writing Skills
Professional writing of reports [Technical], writing of Journals
02 Hrs

List of Reference Books, e – Books, e – Journals			
Sr. No.	Title	Author	Publications
1	Quality Planning and Analysis	Juran	TMH Publications
2	Handbook of Effective Technical Communications	Taylor G. Hicks, Carl M., Valerie Sr.	TMH Publications
3	Technical Writing Process and Product	Saron J. Gerson	Prentice Hall Publication
4	Thesis and Assignment	Anderson, Dastan, Poole	Wiley Eastern Limited

- Continuous Assessment
- Performing the experiments in the laboratory/ Study experiment
- Oral examination conducted (internally) on the syllabus and the term work mentioned above