
G.S. Mandal’s
Maharashtra Institute of Technology, Aurangabad

Department of Computer Science and Engineering

LAB MANUAL
CSE 322: Operating System

(2019-20 Part 1)

Maharashtra Institute of Technology, Aurangabad
NH-211, MIT Campus, Satara Village Road, Aurangabad- 431 010 (M.S.); India.
 Phone: (0240) 2375222; Fax: (0240) 2376618, E-mail: principalmitt@mit.asia

Website: www.btech.mit.asia

mailto:principalmitt@mit.asia

Department of Computer Science and Engineering

Vision

To develop the department as a center of excellence in the field of computer science and

engineering by imparting knowledge & training to the students for meeting growing needs of

the industry & society.

Mission

Providing quality education through a well-designed curriculum in tune with the challenging

needs of software industry by providing state of the art facilities and to impart knowledge in

the thrust areas of computer science and engineering.

1

Department of Computer Science and Engineering

Program Educational Objectives

PEO1: To prepare the students to achieve success in Computing Domain to create individual
careers, innovations or to work as a key contributor to the private or Government sector and
society.

PEO2: To develop the ability among the students to understand Computing and mathematical
fundamentals and apply the principles of Computer Science for analyzing, designing and testing
software for solving problems.

PEO3: To empower the students with ability to quickly reflect the changes in the new
technologies in the area of computer software, hardware, networking and database management.

PEO4: To promote the students with awareness for lifelong learning, introduce them to
professional practice, ethics and code of professionalism to remain continuous in their profession
and leaders in technological society.

Program Specific Objectives

PSO1: Identify appropriate data structures and algorithms for a given contextual problem and
develop programs to design and implement applications.

PSO3: Design and manage the large databases and develop their own databases to solve real
world problems and to design, build, manage networks and apply wireless techniques in mobile
based applications.

PSO3: Design a variety of computer-based components and systems using computer hardware,
system software, systems integration process and use standard testing tools for assuring the
software quality.

2

Department of Computer Science and Engineering

Program Outcomes

PO1: Apply knowledge of mathematics, science, and engineering fundamentals to solve problems
in Computer science and Engineering.

PO2: Identify, formulate and analyze complex problems.

PO3: Design system components or processes to meet the desired needs within realistic
constraints for the public health and safety, cultural, societal and environmental considerations.

PO4: Use research-based knowledge and research methods including design of experiments,
analysis and interpretation of data for valid conclusions.

PO5: Select and apply modern engineering tools to solve the complex engineering problem.

PO6: Apply knowledge to assess contemporary issues.

PO7: Understand the impact of engineering solutions in a global, economic, environmental, and
societal context.

PO8: Apply ethical principles and commit to professional ethics and responsibilities.

PO9: Work effectively as an individual, and as a member or leader in diverse teams and in
multidisciplinary settings.

PO10: Communicate effectively in both verbal and written form.

PO11: Demonstrate knowledge and apply engineering and management principles to manage
projects and in multi-disciplinary environment.

PO12: To engage in life-long learning to adopt to the technological changes.

3

Department of Computer Science and Engineering

Course: CSE 301: Operating System

Course Outcomes:
After completing the course students will be able to

CO1: To understand the role of OS and Learn UNIX Commands

CO2: To analyze and Compare various algorithms used for memory management, CPU
scheduling, File Handling and I/O Operations.

CO3: To apply various concepts related to deadlock to solve problems related to resource
allocation.

CO4: Analyze role of process synchronization in increasing system performance.

CO5: Apply various process scheduling algorithms.

CO6: To use various memory allocation techniques.

Mapping

Experiment

No.
Blooms Level Mapping To CO Mapping To PO

1 Apply 2 1
2 Apply 1 1
3 Apply 5 2
4 Apply 5 2
5 Apply 5 2
6 Apply 5 2
7 Apply 3 1,2
8 Apply 3 1,2
9 Apply 6 1,3
10 Apply 6 1,3

4

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

LIST OF EXPERIMENT

EXPERIMENT
NO. EXPERIMENT DESCRIPTION

Co
Mapping

1
To perform various primitive operations of Files: Open a file,
Read text from a file, Append to a file, Write Text into a file, Copy
contents of one file to other.

2

2
To study and implement various basic Linux System Calls
Fork(), Exec(), Delay(),Kill(),Alarm() 1

3
To study and implement First Come First Serve(FCFS) process
scheduling algorithm 5

4
To study and implement shortest job first(SJF) process scheduling
algorithm. 5

5
To study and implement Round Robin(RR) process scheduling
algorithm. Use Quantum very low and Very high and compare
results

5

6
To study and implement Priority Scheduling Algorithm.

5

7
To study and implement Deadlock Detection Algorithm.

3

8

To study and implement Banker’s Algorithm.

3

9
To study and implement memory allocation technique: First Fit
Algorithm, Best Fit Algorithm, Worst Fit Algorithm 6

10
To study and implement page replacement policy: First In First
Out(FIFO) 6

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

Experiment No. 1

Aim:- To perform various primitive operations of Files: Open a file, Read text from a file,
Append to a file, Write Text into a file, Copy contents of one file to other.

Theory:-

To get the input we may read to specify the file or device to use as the source and the
address and length of the memory buffer into which the input should be read.

The general method should be used to pass the parameter in register. The arguments that we pass
on to main() at the command prompt are called command line arguments. The function main()
can have two arguments, traditional named as argc and argv is a array of pointers to strings and
argc is an int whose value is equal to the number f strings to which arg v points. When the
program is executed, the string on the command line are passed to main(). More precisely we
pass, the string but the command line are stored in argv[1] and so on. The argument argc is set
the number of strings given on the command line, For example in the program, if at the
command prompt we give

$ gcc file.c

$./a.out abc1.txt abc2.txt

Then

Argc contains 3

Argv[0] would contain base of “file”

Argv[1] would contain base of “abc1.txt”

Argv[2] would contain base of “abc2.txt”

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

Whenever we pass arguments to main(), it is a good habit whether the
correct number of arguments have been passed on the main() or not, In our
program this has been done through

if(arg c! = 3)

{

printf (“improper number of arguments “);

exit();

}

1] There is no need to compile the program every time we want to use this
utility. It can be executed at command prompt.

2] We are able to pass source file name and target file name to main() and
utility them in main().

 One final comment…..The while loop that we have used
in our program can be written in a more compact from as shown below:

While (ch=f get c (fs) != EOF)

F put (ch, ft);

 This avoid the usage of indefinite loop and a break statement
to come out of this loop. Here, first fget c (fs) gets the character from the file
assign it to the variable ch, and the ch is compared against EOF. Remember
that is necessary to put the expression

 Ch=fget(fs)

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

 Within a pair of parentheses, so that the character reads is assigned to
variable ch and then it is compared with EOF . There is one more way of
writing the while loop, It is shown below:

While (! feof (fs))

{

Ch=fgetc (fs);

Fput c(ch,ft);

}

Here, feof() is macro which returns a 0 if end if file in not reahed, Hence the !
operator to negate this 0 to the truth value. When the end of file is reached
frof() returns non-zero value, 1! Operator makes it 0 and since the while loop
gets terminated.

 Note that in each of one of them the following three
method for opening a file are same , since in each one of them essentially a
base of the string is being passed to fopen()

Fs=fopen (“abc1.c,”r”)

Fs=fopen (“file.exe,”r”)

Fs=fopen (“arg[1], ”r”);

Logic of the Program:-

if (argc != 3)

{

puts ("Improper number of arguments") ;

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

exit() ;

}

fs = fopen (argv[1], "r") ;

if (fs == NULL)

{

puts ("Cannot open source file") ;

exit() ;

}

ft = fopen (argv[2], "w") ;

if (ft == NULL)

{

puts ("Cannot open target file") ;

fclose (fs) ;

exit() ;

}

Expected Output

First file.c file

$ gcc file.c

$./a.out abc1.txt abc2.txt

File copied

Conclusion:-

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

Hence we have implemented a program to read and write data from one
file and copy it into another file using command line arguments.

Experiment No. 2

Aim:- To study and implement various basic Linux System Calls Fork(), Exec(),
Delay(),Kill(),Alarm()

Theory:-

 System Calls:

A system call is a service request made by the kernel by a program. Generally speaking, the
service is something that only the kernel has the right to do, like I / O. Programmers don't usually
have to think about system calls because there are functions in the GNU C library to do nearly all
that system calls do. By making machine calls themselves, these functions work. For instance,
there is a system call that changes a file's permissions, but you don't have to learn about it
because you can only use the chmod feature of the GNU C Library. System calls are sometimes
called kernel calls.

Fig. 2.1 System call Execution

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

The machine call provides the operating system resources with an interface. Application
developers often do not have direct access to device calls, but can use an application
programming interface (API) to access them. The functions in the API invoke the actual system
calls. Several advantages can be achieved by using the API: portability: as long as an API is
supported by a framework, any application that uses the API will compile and run.

Ease of use: it can be considerably easier to use the API than to use the actual program call.

There are 5 different categories of system calls: process control, file manipulation, device
manipulation, information maintenance and communication.

Steps for “fork” system call demo:

STEP 1: Start the program.

STEP 2: Declare pid as integer.

 STEP 3: Create the process using Fork command.

STEP 4: Check pid is less than 0 then print error else if pid is equal to 0 then execute command
else parent process wait for child process.

STEP 5: Stop the program.

SAMPLE OUTPUT:

$ gcc pc.c
$ a.out
parent process $ child process
$ps
 PID CLS PRI TTY TIME COMD
5913 TS 70 pts 022 0:00 ksh
Conclusion:-

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

Thus the program was executed and verified successfully for various basic
Linux System Calls.

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

Experiment No.3

Aim: To study and implement First Come First Serve(FCFS) process scheduling algorithm.

Theory :

CPU scheduling is a process that allows one process to use the CPU while the execution of
another process is on hold due to the unavailability of any resource such as I / O and so on,
making full use of the CPU. CPU scheduling is intended to make the system effective, fast and
reasonable.

When the CPU is idle, one of the processes in the ready queue to be run must be selected by the
operating system. The short-term scheduler (or CPU scheduler) conducts the selection process.
The scheduler selects and allocates the CPU to one of the processes in memory that are ready to
execute.

The Dispatcher is another factor involved in the scheduling role of the CPU. The dispatcher is
the module that enables the CPU to be managed by the short-term scheduler selected.

This function involves:

 Switching context

 Switching to user mode

 Jumping to the proper location in the user program to restart that program from where it

left last time.

Because it is called during every process turn, the dispatcher should be as fast as possible. The
time taken by the dispatcher is known as the Dispatch Latency to interrupt one process and
resume another process. Use the figure below to illustrate the dispatch latency.

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

Fig. 3.1 dispatch latency

CPU scheduling decisions will take place under the following four circumstances:

1. when a process moves from the running state to the waiting state (for I / O requests or
requests to wait for one of the child processes to be terminated).

2. When a process switches from the operating state to the ready state (e.g. when there is an
 interrupt).

 3. When a phase transitions from the waiting state to the ready state (e.g. I / O completion).

 4. When a cycle is completed.

In circumstances 1 and 4, there is no choice in terms of scheduling. A new process(if one exists
in the ready queue) must be selected for execution. There is a choice, however in circumstances
2 and 3.When Scheduling takes place only under circumstances 1 and 4, we say the scheduling
scheme is non-preemptive; otherwise the scheduling scheme is preemptive.

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

Non-Preemptive Scheduling:
Under non-preemptive scheduling, once the CPU has been allocated to a process, the process
keeps the CPU until it releases the CPU either by terminating or by switching to the waiting
state.
This scheduling method is used by the Microsoft Windows 3.1 and by the Apple Macintosh
operating systems.
It is the only method that can be used on certain hardware platforms, because It does not require
the special hardware (for example: a timer) needed for preemptive scheduling.
Preemptive Scheduling:
In this type of Scheduling, the tasks are usually assigned with priorities. At times it is necessary
to run a certain task that has a higher priority before another task although it is running.
Therefore, the running task is interrupted for some time and resumed later when the priority task
has finished its execution.

First Come First Serve Scheduling: In the scheduling algorithm "First come first serve," as the
name suggests, the process that comes first is executed first, or we can tell the process that first
asks the CPU gets the CPU allocated first.
First Come First Serve is like FIFO(First in First out) Queue data structure, where the data item
that is first added to the queue is the one that first leaves the queue. For Batch Systems, this is
used. Using a queue data structure, where a new process enters through the queue's tail, it is easy
to understand and execute programmatically and the scheduler selects process from the queue's
head. Purchasing tickets at the ticket counter is a perfect example of FCFS scheduling in real life.

Calculating Average Waiting Time:
Average waiting time is a key parameter for any scheduling algorithm to assess its performance.
The average waiting time of the processes in the queue is AWT or Average waiting time, waiting
for the scheduler to select them for execution. Lower the Average Waiting Time, better the
scheduling algorithm.
Consider the processes P1, P2, P3, P4 given in the below table, arrives for execution in the same
order, with Arrival Time 0, and given Burst Time, let's find the average waiting time using the
FCFS scheduling algorithm.

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

The average waiting time = (0+21+24+30) / 4 = 18.75 ms.

P1 P2 P3 P4
0 21 24 30 32

GANNT chart for above process.

Here we have simple formulae for calculating various times for given processes:

Completion Time: Time taken for the execution to complete, starting from arrival time.

Turn Around Time: Time taken to complete after arrival. In simple words, it is the difference
between the Completion time and the Arrival time.

Waiting Time: Total time the process has to wait before it's execution begins. It is the difference
between the Turn Around time and the Burst time of the process.

For the program above, we have considered the arrival time to be 0 for all the processes, try to
implement a program with variable arrival times.

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

Process Number Burst time (ms)

P1 21

P2 3

P3 6

P4 2

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

Expected Output:

Conclusion: Thus we have studied and implemented FCFS process scheduling algorithm.

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

Experiment No.4

Aim : To study and implement shortest job first(SJF) process scheduling algorithm.

Theory :

 Shortest Job First scheduling operates first on the process with the shortest time of burst

or length. This is the best approach to minimize waiting time.

 This is used in Batch Systems.

 It is of two types:

1. Non Pre-emptive

2. Pre-emptive

 To order to implement it effectively, the processor should be aware of the burst time /

duration time of the processes to advance, which is technically not always feasible.

 If all the jobs / processes are available at the same time, this scheduling algorithm is

optimal. (Either time of arrival is 0 for everyone, or time of arrival is the same for
everyone)

Consider the below processes available in the ready queue for execution, with arrival
time as 0 for all and given burst times.

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

Process Number Burst time (ms)

P1 21

P2 3

P3 6

P4 2

https://www.studytonight.com/operating-system/types-of-os

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

The average waiting time = (0+2+5+11) / 4 = 4.5 ms.

P4 P2 P3 P1
0 2 5 11 32

GANNT chart for above process.

Expected sample output:

Conclusion: Thus we have studied and implemented FCFS process scheduling algorithm.

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

Experiment No.5

Aim : To study and implement Round Robin(RR) process scheduling algorithm. Use Quantum
very low and Very high and compare results.

Theory:

Round Robin is a CPU scheduling algorithm in which a fixed time slot is cyclically allocated to
each operation. It is quick, easy to implement and free from hunger as all processes receive a fair
share of the CPU. One of the most widely used CPU scheduling strategies as a heart. It is
preventive because processes are allocated to the CPU for at most only a fixed slice of time.
The downside of this is that background switching is more overhead.

Example: Consider following Three processes with their arrival time,

Process Number Duration Order Arrival Time
P1 3 1 0
P2 4 2 0
P3 3 3 0

Suppose time quantum is 1 unit,

P1 P2 P3 P1 P2 P3 P1 P2 P3 P2
0 10

P1 waiting time = 4

P2 waiting time = 6

P3 waiting time = 6

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

1. Completion Time: Time at which process completes its execution.
2. Turn Around Time: Time Difference between completion time and arrival time. Turn

Around Time = Completion Time – Arrival Time
3. Waiting Time(W.T): Time Difference between turnaround time and burst time.

Waiting Time = Turn Around Time – Burst Time

Steps to find waiting times of all processes:

1- Create an array rem_bt[] to keep track of remaining

 burst time of processes. This array is initially a

 copy of bt[] (burst times array)

2- Create another array wt[] to store waiting times

 of processes. Initialize this array as 0.

3- Initialize time : t = 0

4- Keep traversing the all processes while all processes

 are not done. Do following for i'th process if it is

 not done yet.

 a- If rem_bt[i] > quantum

 (i) t = t + quantum

 (ii) bt_rem[i] -= quantum;

 c- Else // Last cycle for this process

 (i) t = t + bt_rem[i];

 (ii) wt[i] = t - bt[i]

 (ii) bt_rem[i] = 0;

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

Expected Sample Output:

Processes Burst time Waiting time Turn around time

 1 10 13 23

 2 5 10 15

 3 8 13 21

Average waiting time = 12

Average turnaround time = 19.6667

Conclusion: Thus we have studied and implemented Round robin Process scheduling algorithm.

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

Experiment No. 6

Aim: To study and implement Priority Scheduling Algorithm.

Theory: The priority of a process is typically the opposite of the CPU burst time in the Shortest
Job First scheduling algorithm, i.e. the higher the burst time the lower is the priority of that
process.

In the case of priority scheduling, the priority is not always set as the reverse of the CPU burst
time, but it can be set internally or externally, but yes the scheduling is done on the basis of the
process's priority where the most urgent process is handled first, followed by the lesser priority
processes in order.

FCFS performs operations with the same priority. The priority of process, when internally
defined, can be decided based on memory requirements, time limits ,number of open
files, ratio of I/O burst to CPU burst etc.

Whereas, external priorities are set based on criteria outside the operating system, like the
importance of the process, funds paid for the computer resource use, market factor etc.

Priority Scheduling can be of two types,

Preemptive Priority Scheduling: if the new process arrived at the ready queue has a higher
priority than the current process, the CPU is preempted, which means the processing of the
current process is stopped and the higher priority incoming new process is allocated to the CPU
for execution.

Non-Preemptive Priority Scheduling: In the case of a non-preemptive priority scheduling
algorithm, if a new process arrives with a higher priority than the current running process, the
incoming process is positioned at the head of the ready queue, indicating that it will be processed
after the running of the current process.

Consider the below table fo processes with their respective CPU burst times and the priorities.

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

P2 P1 P4 P1
0 3 24 26 32

GANNT chart for above process.

The average waiting time = (0+3+24+26) / 4 = 13.25 ms.

Expected Sample output:

Conclusion : Thus we have studied and implemented priority scheduling algorithm.

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

Process Number Burst time (ms) Priority
P1 21 2
P2 3 1
P3 6 4
P4 2 3

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

Experiment No 7.

Aim : To study and implement Deadlock Detection Algorithm.

Theory :
Deadlock is a condition where a series of processes are delayed because each process retains a
resource and is waiting for another resource that some other process has acquired.

Imagine an example when two trains come to each other on the same track and there is only one
track, once they are in front of each other, none of the trains can pass. Similar situation exists in
operating systems when there are two or more processes that have some resources and are
waiting for other resources. For example, Process 1 holds Resource 1 in the diagram below and
is waiting for Resource 2 obtained via Process 2, and Process 2 is waiting for Resource 1.

Deadlock can arise if four conditions hold simultaneously:

· Mutual exclusion: only one process at a time can use a resource

· Hold and wait: holding at least one resource and is waiting to acquire additional resources

 held by others

· No preemption: a resource can be released only voluntarily by the process holding it.

· Circular wait: there exists a set {P0, P1, …, Pn} of waiting processes such that:

P0 is waiting for a resource that is held by P1,

P1 is waiting for a resource that is held by P2, …,

Pn–1 is waiting for a resource that is held by Pn, and

Pn is waiting for a resource that is held by P0.

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

Deadlock Prevention:

 Restrain the ways request can be made
 Hold and Wait –Require process to request and be allocated all its resources before it

begins execution, or allow process to request resources only when the process has none.
 No Preemption – If a process holding some resources requests another resource that

cannot be immediately allocated to it, all resources currently being held are released.
Process will be restarted only when it can regain its old resources, as well as the new ones
that it is requesting.

 Circular Wait – impose a total ordering of all resource types, and require that each
process requests resources in an increasing order of enumeration.

Deadlock Avoidance:

Requires that the system has a priori information available.

 Simplest model requires that each process declare the maximum number of resources of
each type that it may need.

 The deadlock-avoidance algorithm dynamically examines the resource-allocation state to
ensure that there can never be a circular-wait condition.

Deadlock Detection Algorithm in Operating System:

If a system does not employ either a deadlock prevention or deadlock avoidance algorithm then a
deadlock situation may occur. In this case,

 Apply an algorithm to examine state of system to determine whether deadlock has has
occurred or not.

 Apply an algorithm to recover from the deadlock.

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

Deadlock Detection Algorithm :
The algorithm employs several time varying data structures:

 Available- A vector of length m indicates the number of available resources of each type.

 Allocation- An n*m matrix defines the number of resources of each type currently

allocated to a process. Column represents resource and resource represent process.

 Request- An n*m matrix indicates the current request of each process. If request[i][j]

equals k then process Pi is requesting k more instances of resource type Rj.

We treat rows in the matrices Allocation and Request as vectors, we refer them as Allocationi and
Requesti.

1. n this, Work = [0, 0, 0] &

Finish = [false, false, false, false, false]
2. i=0 is selected as both Finish[0] = false and [0, 0, 0]<=[0, 0, 0].
3. Work =[0, 0, 0]+[0, 1, 0] =>[0, 1, 0] &

Finish = [true, false, false, false, false].
4. i=2 is selected as both Finish[2] = false and [0, 0, 0]<=[0, 1, 0].
5. Work =[0, 1, 0]+[3, 0, 3] =>[3, 1, 3] &

Finish = [true, false, true, false, false].

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

6. i=1 is selected as both Finish[1] = false and [2, 0, 2]<=[3, 1, 3].
7. Work =[3, 1, 3]+[2, 0, 2] =>[5, 1, 5] &

Finish = [true, true, true, false, false].
8. i=3 is selected as both Finish[3] = false and [1, 0, 0]<=[5, 1, 5].
9. Work =[5, 1, 5]+[2, 1, 1] =>[7, 2, 6] &

Finish = [true, true, true, true, false].
10. i=4 is selected as both Finish[4] = false and [0, 0, 2]<=[7, 2, 6].
11. Work =[7, 2, 6]+[0, 0, 2] =>[7, 2, 8] &

Finish = [true, true, true, true, true].
12. Since Finish is a vector of all true it means there is no deadlock in this example.

Expected Sample output:

Conclusion: Thus, we have studied and implemented deadlock detection algorithm.

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

Experiment No 8.

Aim : To study and implement Banker’s Algorithm.

Theory:

Banker's algorithm is an algorithm of impasse avoidance. It is called so because in banking
systems, this algorithm is used to assess whether or not a loan can be issued. Remember that in a
bank there are n account holders and the sum of money in all their accounts is S. Each time the
bank has to issue a loan, it subtracts the amount of the loan from the bank's total money. Then it
will test whether that disparity is greater than S. It's done because, only then, even if all the
account holders draw all their money at once, the bank would have enough money. Banker's
algorithm operates in computers similarly.

Banker's algorithm is an allocation of resources and an algorithm for the prevention of deadlock.
This safety algorithm test simulates the allocation for fixed maximum possible quantities of all
resources, then conducts a "s-state" check to monitor for potential activities before determining
whether to allow the allocation to proceed.
Simply put, it tests if allocation of any resource would result in a deadlock or not, or whether it is
possible to assign a resource to a process and if not, resource will not be allocated to that process.
Determining a stable sequence (even if there is only 1) should ensure that the program is not
blocked.
Banker’s algorithm is generally used to find if a safe sequence exist or not. But here we will
determine the total number of safe sequences and print all safe sequences.
The data structure used are,

 Available vector

 Max Matrix

 Allocation Matrix

 Need Matrix

Resource Request Algorithm:

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

This describes the behavior of the system when a process makes a resource request in the form of
a request matrix.

The steps are:

1. If number of requested instances of each resource is less than the need (which was
declared previously by the process), go to step 2.

2. If number of requested instances of each resource type is less than the available resources
of each type, go to step 3. If not, the process has to wait because sufficient resources are
not available yet.

3. Now, assume that the resources have been allocated. Accordingly do,

Available = Available – Request i

Allocation(i) = Allocation(i) + Request(i)

Need(i) = Need(i) - Request(i)

This step is done because the system needs to assume that resources have been allocated. So
there will be fewer resources available after allocation. The number of allocated instances
will increase. The need of the resources by the process will reduce. That's what is represented
by the above three operations. After completing the above three steps, check if the system is
in safe state by applying the safety algorithm. If it is in safe state, proceed to allocate the
requested resources. Else, the process has to wait longer.

Safety Algorithm:

1. Let Work and Finish be vectors of length m and n, respectively. Initially,

 Work = Available

 Finish[i] =false for i = 0, 1, ... , n - 1.

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

This means, initially, no process has finished and the number of available resources is
represented by the Available array.

2. Find an index i such that both

Finish[i] ==false

Needi <= Work

If there is no such i present, then proceed to step 4.

It means, we need to find an unfinished process whose need can be satisfied by the available
resources. If no such process exists, just go to step 4.

3. Perform the following:

Work = Work + Allocation;

Finish[i] = true;

Go to step 2.

When an unfinished process is found, then the resources are allocated and the process is
marked finished. And then, the loop is repeated to check the same for all other processes.

4. If Finish[i] == true for all i, then the system is in a safe state.

That means if all processes are finished, then the system is in safe state.

Example:

Resource number R1 R2 R3
Instances available 10 5 7

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

Process Allocation Max
R1 R2 R3 R1 R2 R3

P1 0 1 0 7 5 3
P2 2 0 0 3 2 2
P3 3 0 2 9 0 2
P4 2 1 1 2 2 2

Explanation:
Total resources are R1 = 10, R2 = 5, R3 = 7 and allocated resources are R1 = (0+2+3+2 =) 7, R2
= (1+0+0+1 =) 2, R3 = (0+0+2+1 =) 3. Therefore, remaining resources are R1 = (10 – 7 =) 3, R2
= (5 – 2 =) 3, R3 = (7 – 3 =) 4.
Remaining available = Total resources – allocated resources
 and
 Remaining need = max – allocated

So, we can start from either P2 or P4. We can not satisfy remaining need from available
resources of either P1 or P3 in first or second attempt step of Banker’s algorithm. There are only
four possible safe sequences.
These are:

P2–> P4–> P1–> P3

P2–> P4–> P3–> P1

P4–> P2–> P1–> P3

P4–> P2–> P3–> P1

Conclusion: Thus we have studied and implemented Banker’s algorithm.

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

Experiment No 9

Aim: To study and implement memory allocation technique: First Fit Algorithm, Best Fit

Algorithm, and Worst Fit Algorithm.

Theory :

 The allocation policy that always allocates from the smallest suitable free block.
Suitable allocation mechanisms include sequential fit searching for a perfect fit, first fit on a size-
ordered free block chain, segregated fits, and indexed fits. Many good fit allocators are also
described as best fit. In theory, best fit may exhibit bad fragmentation, but in practice this is not
commonly observed.

 First fit simply searches the free list from the beginning, and uses the first free block large
enough to satisfy the request. If the block is larger than necessary, it is split and the remainder is
put on the free list.

Logic of the Program:-

Take one array to store total number of partition:
Say arrr[]
Store element in arr[]
Sort it
Ask for the Requirement of Memory
Store it as choice if choice is less than arr[i]
 if(arr[i]>=ch)
 {
 printf("\nBest Fit=%d",arr[i]);
 printf("\nFirst Fit=%d",arr[i+1]);
 printf("\nWorst Fit=%d",arr[n-1]);
 x=1;

 break;

 }

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

 }
 if(x==0)
{
printf("\nMemory Requirement is Large...");
}
 getch();
}

Sample Output:

Conclusion: Hence we have studied and implemented memory management
algorithms.

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

Experiment no. 10

Aim: To study and implement page replacement policy: First In First Out(FIFO).

Theory:

A page replacement algorithm is needed in an operating system that uses paging for memory
management to assess which page needs to be replaced when a new page is entered.
Page Fault–A page fault occurs when a running program accesses a memory page mapped into
the space of the virtual address, but not loaded into the physical memory.
Because the actual physical memory is much smaller than the virtual memory, there are page
faults. Operating System may need to replace one of the current pages with the newly needed
page in the event of a page fault. Different algorithms for page replacement suggest different
ways of selecting which page to replace. The goal is to reduce the number of page faults for all
algorithms.

Page Replacement Algorithms:

First In First Out (FIFO) : This is the simplest page replacement algorithm. In this algorithm, the
operating system keeps track of all pages in the memory in a queue, the oldest page is in the front
of the queue. When a page needs to be replaced page in the front of the queue is selected for
removal.

Steps for Program:
1. Start the process

2. Declare the size with respect to page length

3. Check the need of replacement from the page to memory

4. Check the need of replacement from old page to new page in memory

5. Form a queue to hold all pages

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

MAHARASHTRA INSTITUTE OF
TECHNOLOGY AURANGABAD

LABORATORY
MANUAL

PRACTICAL EXPERIMENT INSTRUCTION SHEET

DEPARTMENT: COMPUTER SCIENCE AND ENGINEERING

LABORATORY :
A.Y.: 2019-20

Class: TY CSE PART: I SUBJECT: Operating System

6. Insert the page require memory into the queue

7. Check for bad replacement and page fault

8. Get the number of processes to be inserted

9. Display the values

10. Stop the process

Sample Expected Output:

Conclusion : Thus we have studied and implemented FIFO page replacement algorithm.

PREPARED BY : Mr. K.R. Khandarkar

APPROVED BY : HCSED

	FrontPageOS
	CommonPages OSKRK
	Os lab manual new formatKK

