G. S. Mandal's

Maharashtra Institute of Technology, Aurangabad

(An Autonomous Institute) END SEMESTER EXAMINATION

First Year M.Tech(ME) -April/May 2022

Course Code: MTM102

Course Name: Machine Stress Analysis

Duration: 2 Hrs

Max. Marks: 50

Date: 07/04/2022

Instructions:

- i) All questions are compulsory
- ii) Assume suitable data wherever necessary and clearly state it
- iii) Figures to the right indicate full marks
- Q. 1 Solve/Answer any five (Marks: 10)

	Questions	Marks	СО	BL
a)	Explain the true stress and true strain in brief.	2	1	2
b)	State Castigliano's first and second theorem of strain deflection.	2	2	1
c)	Explain kelvin fluid flow analogy.	2	3	2
d)	Enlist the different optical and electrical strain gauges with its	2	4	1
	applications.			
e)	Write the shear centre equation for channel section.	2	5	1
f)	State the expression for deflection of body in point contact.	2	6	1
Q. 2	Figure 1 shows simply supported beam of span L with rectangular load,	8	2	4

starting from zero at one end and increasing to wL at another end. Find central deflection.

Fig. 1

- Q. 3 Determine the angular displacement and shearing stress in a thin walled 8 3 4 tube of diameter D rolled from a G.I. sheet thickness δ , if
 - a) The edge of the sheet are free.
 - b) The edge of the sheet are riveted.

In above example if a rivet pitch of 5 cm is used and D = 10 cm, δ = 2 mm, T= 10 kg-m, find the shear force on each rivet and the suitable diameter of the rivets, if permissible shear stress in rivets is 785 kg/cm².

Q. 4	Differentiate self-temperature compensation and compensating dummy	8	4	3
	gauge			
	(OR)			
Q. 4	What are the methods are available for computing the strain rosette	8	4	3
	data's?			
Q. 5	Derive the equation of Shear centre for channel section.	8	5	4
Q. 6	Derive expression for deflection of bodies in point contact	8	6	4
	(OR)			
Q. 6	Explain in brief method of computing contact stresses.	8	6	3

and the second seco