

MAHARASHTRA INSTITUTE OF TECHNOLOGY, AURANGABD

An Autonomous Institute Affiliated to Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra (India)

M.Tech. Syllabus 2021-22

		FAC	CULTY	OF S	CIENC	E AND	TECH	NOLO	GY						
	Syllab	us Str	ucture	w.e.f.	2021-20)22 (Ch	oice Ba	sed Cr	edit Sys	tem)					
			М.	Tech.		nical E	ngineer	ing)							
Course	Course Name		hing Sc		Seme	ester-I Exan	nination	Scheme	e and Ma	ırks			С	redits	
Code			ours/W	Í											
		Lecture	Tutorial	Practical	MSE-I	MSE-II	TA	ESE	ΤW	PR/OR	Total	LECT	TW/PR	TUT	Total
MTM 101	Research Methodology and IPR	3	1	-	15	15	20	50	-	-	100	3	-	1	4
MTM 102	Machine Stress Analysis	3	-	-	15	15	20	50	-	-	100	3	-	-	3
MTM 103	Advances in Materials	3	-	-	15	15	20	50	-	-	100	3	-	-	3
MTM 104	Advanced Thermodynamics	3	-	-	15	15	20	50	-	-	100	3	-	-	3
MTM 121-123	Professional Elective-I	3	-	-	15	15	20	50	-	-	100	3	-	-	3
MTM 111	Lab -I	-	-	2	-	-	-	-	25	-	25	-	1	-	1
MTM 112	Lab -II	-	-	2	-	-	-	-	25	-	25	-	1	-	1
MTM 113	Lab-III (Matlab)	-	-	2	-	-	-	-	25	-	25	-	1	-	1
MTM 114	Seminar	-	-	4	-	-	-	-	-	50	50	-	2	-	2
	Total (Semester-I)	15	1	10	75	75	100	250	75	50	625	15	5	1	21
					Seme	ster-II									
Course Code	Course Name		hing Sc ours/W			Exan	nination	Scheme	e and Ma	arks			С	redits	
		Lecture	Tutorial	Practical	MSE-I	MSE-II	TA	ESE	ML	PR/OR	Total	LECT	TW/PR	TUT	Total
MTM 141	Advanced Optimization Techniques	3	1	-	15	15	20	50	-	-	100	3	-	1	4
MTM 142	Advanced Machine Design	3	-	-	15	15	20	50	-	-	100	3	-	-	3
MTM 143	Advanced Manufacturing Processes	3	-	-	15	15	20	50	-	-	100	3	-	-	3
MTM 144	Computational Fluid Dynamics	3	-	-	15	15	20	50	-	-	100	3	-	-	3
MTM 161-163	Professional Elective-II	3	-	-	15	15	20	50	-	-	100	3	-	-	3
MTM 151	Lab –IV (Optimization Programming or software)	-	-	2	-	-	-	-	25	-	25	-	1	-	1
MTM 152	Lab –V (CFD software)	-	-	2	-	-	-	-	25	-	25	-	1	-	1
MTM 153	Lab-VI (Advanced Matlab)	-	-	2	-	-	-	-	25	-	25	-	1	-	1
MTM 154	Minor Project (Problem Based Learning)	-	-	4	-	-	-	-	-	50	50	-	2	-	2
	Total (Semester-II)	15	1	10	75	75	100	250	75	50	625	15	5	1	21
MSE- Mid	Semester Exam, ESE- End Semes	ter Exa	m, LEC		· ·	· ·		Assessm	ent, TW-	Term W	ork, PR	- Prac	tical, T	TUT- Tu	torial
				Μ		First Ye	ar)								
	Grand Total				150	150	200	500	150	100	1250	30	10	2	42

Professional Elective Courses-I

Group A	Group B	Group C
MTM 121: Kinematics: Dynamics and	MTM 122: Smart Manufacturing	MTM 123: Advanced Heat Transfer
Synthesis		

Professional Elective Courses-II

Group A	Group B	Group C
MTM 161: Finite Element Method	MTM 162: Reliability and	MTM 163: Refrigeration and Cryogenics
	Maintenance Engineering	Systems

					Seme	ster-III									
Course Code	Course Name		hing Sc ours/W			Exan	nination	Scheme	and Ma	arks			C	redits	
		Lecture	Tutorial	Practical	MSE-I	MSE-II	TA	ESE	ΤW	PR/OR	Total	LECT	TW/PR	TUT	Total
MTM 201	MOOC Course	3	-	-	-	-	-	100	-	-	100	3	-	-	3
MTM 211	Dissertation-I	-	-	18	-	-	-		50	100	150	-	9	-	9
	Total (Semester-III)	3		18				100	50	100	250	3	9	-	12

				Seme	ster-IV									
Course Name		0			Exai	nination	Schem	e and Ma	arks			C	redits	
	Lecture	Tutorial	Practical	MSE-I	MSE-II	TA	ESE	MT	PR/OR	Total	LECT	TW/PR	TUT	Total
Dissertation-II	-	-	24	-	-	-		100	100	200	-	12	-	12
Total (Semester-IV)			24					100	100	200	-	12	-	12
1	1		М.	Tech (Se	econd Y	ear)	1			1			1	
Grand Total				-	-	-	100	150	200	450	3	21	-	24
	Dissertation-II Total (Semester-IV)	(Herein and the second seco	(Hours/Wo and and an arrow of the second	Image: Im	Teaching Scheme (Hours/Week) and Dissertation-II - - 24 Total (Semester-IV) - 24 -	(Hours/Week) and state Tell st	Teaching Schweiter Examination 201 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 2 1 <th1< th=""> 1 1 1<td>Course Name Teaching Scheme (Hours/Week) and the urs/Week) III Examination Scheme (Hours/Week) and the urs/Week) III IIII III III III III IIII IIII IIII IIII IIII IIII IIII IIIIII IIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td><td>Course Name Teaching Scheme (Hours/Week) and the rest of the rest of</td><td>Course NameTeaching Scheme (Hours/Week)Examination Scheme and Marksand bit is the colspan="6">Teaching Scheme and bit is the colspan="6">IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td><td>Course Name Teaching Scheme (Hours/Weck) Examination Scheme and Marks 9 100 100 100 200 Dissertation-II - - 24 - - - 100 100 200 Total (Semester-IV) I 24 I I I 100 100 200</td><td>Course Name Teaching Scheme (Hours/Week) Participation Teil of the structure Teil of the structure<</td><td>Course Name Teaching Scheme (Hours/Week) Examination Scheme and Marks Course Name Outse Name Teaching Scheme (Hours/Week) Francisco (Hours/Week)<!--</td--><td>Course Name Teaching Silver Examination Scheme and Marks Credits Dissertation-II - - 24 - 100 100 200 - 12 - Dissertation-II - - 24 - - - - 100 100 200 - 12 - Dissertation-II - 24 - - - - 100 100 200 - 12 - Dissertation-II - - - - - - 100 100<!--</td--></td></td></th1<>	Course Name Teaching Scheme (Hours/Week) and the urs/Week) III Examination Scheme (Hours/Week) and the urs/Week) III IIII III III III III IIII IIII IIII IIII IIII IIII IIII IIIIII IIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Course Name Teaching Scheme (Hours/Week) and the rest of	Course NameTeaching Scheme (Hours/Week)Examination Scheme and Marksand bit is the colspan="6">Teaching Scheme and bit is the colspan="6">IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Course Name Teaching Scheme (Hours/Weck) Examination Scheme and Marks 9 100 100 100 200 Dissertation-II - - 24 - - - 100 100 200 Total (Semester-IV) I 24 I I I 100 100 200	Course Name Teaching Scheme (Hours/Week) Participation Teil of the structure Teil of the structure<	Course Name Teaching Scheme (Hours/Week) Examination Scheme and Marks Course Name Outse Name Teaching Scheme (Hours/Week) Francisco (Hours/Week) </td <td>Course Name Teaching Silver Examination Scheme and Marks Credits Dissertation-II - - 24 - 100 100 200 - 12 - Dissertation-II - - 24 - - - - 100 100 200 - 12 - Dissertation-II - 24 - - - - 100 100 200 - 12 - Dissertation-II - - - - - - 100 100<!--</td--></td>	Course Name Teaching Silver Examination Scheme and Marks Credits Dissertation-II - - 24 - 100 100 200 - 12 - Dissertation-II - - 24 - - - - 100 100 200 - 12 - Dissertation-II - 24 - - - - 100 100 200 - 12 - Dissertation-II - - - - - - 100 100 </td

	M. Tecl	(Mechani	cal)								
Grand Total (M. Tech)	150	150	200	600	300	300	1700	33	31	2	66

	Syllabus of M. Tech. (Mec	hanical Engineering) Semester-I	
Cours	e Code: MTM 101	Credits: 3-1-0 (4)	
Cours	e: Research Methodology & IPR	Mid Semester Examination-I: 15	Marks
	ing Scheme:	Mid Semester Examination-II: 15	Marks
	re: 3 Hrs/week	Teacher Assessment: 20 Marks	
Tutori	al: 1 Hr/week	End Semester Examination: 50 M	arks
		End Semester Examination (Dura	tion): 02 Hrs
Unit	Contents		Hrs
1	Research Problems and Research D	esion	5
•	Meaning of research, types of resea	8	2
	process, criteria of good research, imp		
	and policies for research ethics.	oftunee of ethics in research, codes	
	Selection of research problem, step	os involved in defining research	
	problem, need for research design,		
	principles of experimental design, f		
	design.	and morning experimental	
2	Sampling Design		5
-	Need for sampling, steps in sampling	design, different types of sampling	•
	designs, sampling distributions, cond		
	error, sources of errors, population		
	calculations, tests of measurement		
	practicality		
3	Data collection, Processing and Ana	lveie	8
5	Methods for collection of data, select	•	0
	processing operations, statistics in re		
	of central tendency, dispersion, asymm		
	Spearman's and Pearson's coefficient	•	
	regression analysis, analysis of var		
	methods.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
4	Hypothesis Test and Report Writing	1	7
	Concept of research hypothesis, c		
	Parametric tests (z, t, F and chi-square	tests), Hypothesis testing of means	
	and correlation coefficient, Non paran	netric tests, significance of research	
	report writing, types of reports, struct		
	report writing, precautions and ethics i	in writing report.	
5	Introduction to IPR		5
	Origin and evolution of IPR to its pre-		
	of IPR and what is the nature of the		
	Responsibilities, Societal implications	of IPR	
6	Patents		6
	Concept of inventions/discoveries,	1 1	
	patentability of inventions; Exception		
	in Biotechnology and computer base	d inventions, process to apply for	

patents in India and in other countries around the world, The steps to	
granting of a patent; Opposing grant of a patent; term of a patent; rights	
of a patent holder; challenging validity of a patent licensing of patent	
rights; using patent rights in the market place; compulsory license.	

1. C. R. Kothari and G. Garg. Research Methodology: Methods and Techniques, 4th Edition, New Age International, 2019.

2. R. Pannerselvam. Research Methodology, 2nd Edition, PHI Learning, 2014

3. D. Napolean & B. Narayan. Research Methodology- As Theoretical Approach, Laxmi Publications, 2014.

4. Bernard C. Beins & Maureen A. McCarthy. Research Methods and Statistics, Pearson Education Inc., 2012.

5. Stuart MacDonald & Nicola Headlam. Research Methods Handbook, CLES.

6.Ganguli Prabuddha. Intellectual Property Rights--Unleashing the Knowledge Economy, Tata McGrawHill, 2001.

7. Neeraj Pandey and Khushdeep Dharni. Intellectual Property Rights, 1st Edition, PHI Learning, 2014

8. Ramakrishna B. Fundamentals of Intellectual Property Rights, 1st Edition, Notion Press, 2017

9. The Indian Patents Act 1970 (as amended in 2005)

Credits: 3-0-0 (3)Course: Machine Stress Analysis Teaching Scheme: Lecture: 3 Hrs/weekCredits: 3-0-0 (3)Mid Semester Examination-II: 15 Marks Teacher Assessment: 20 Marks End Semester Examination: 50 Marks End Semester Examination (Duration): 02 HrUnitContentsHrsImage: Stresses and plane Strain: Plain stress, Plain strain, and stress and strain at a point, differential equations of equilibrium, boundary conditions, compatibility equations, and Airy's stress function.HrsITwo dimensional problems in rectangular coordinates: Stress distribution symmetrical about axis, Strain components in polar coordinates.Solutions by polynomials, end effects, Saint Venant's principle. Two dimensional problems in polar coordinates: General equations in polar coordinates, Stress distribution symmetrical about axis, Strain components in polar coordinates.4Applications of Energy Methods: First and Second theorems, Castigliano's theorem, applications for analysis of loaded members to determine deflections and reactions at support.6Stress analysis: Stress analysis by Mechanical, Optical and electrical strain gauges, strain rosette, whole field methods, Moire fringe method, brittle coatings for strain indication.6Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of bodies in point contact, stress in bodies in point and line contacts		Syllabus of M. Tech. (Mech	anical Engineering) Semester-I				
Teaching Scheme: Lecture: 3 Hrs/week Mid Semester Examination-II: 15 Marks Teacher Assessment: 20 Marks End Semester Examination: 50 Marks End Semester Examination (Duration): 02 Hr Unit Contents Hrs 1 Theory of Elasticity: Plane Stresses and plane Strain: Plain stress, Plain strain, and stress and strain at a point, differential equations of equilibrium, boundary conditions, compatibility equations, and Airy's stress function. Two dimensional problems in rectangular coordinates: Solutions by polynomials, end effects, Saint Venant's principle. Two dimensional problems in polar coordinates: General equations in polar coordinates, Stress distribution symmetrical about axis, Strain components in polar coordinates. 4 2 Applications of Energy Methods: Sections, Thin walled hollow and rectangular cross sections, Saint Venant's theory, Prandtle's membrane analogy, Kelvin's fluid flow analogy, Wraping of cross sections. 6 4 Experimental Stress Analysis: Stress analysis by Mechanical, Optical and electrical strain gauges, strain rosette, whole field methods, Moire fringe method, brittle coatings for strain indication. 6 5 Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending. 6 6 Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of bodies in point contact, stress in bodies in point and 6	Cours	•	<u> </u>				
Lecture: 3 Hrs/week Teacher Assessment: 20 Marks End Semester Examination: 50 Marks End Semester Examination (Duration): 02 Hr Unit Contents Hrs 1 Theory of Elasticity: Plane Stresses and plane Strain: Plain stress, Plain strain, and stress and strain at a point, differential equations of equilibrium, boundary conditions, compatibility equations, and Airy's stress function. Two dimensional problems in rectangular coordinates: Solutions by polynomials, end effects, Saint Venant's principle. Two dimensional problems in polar coordinates: General equations in polar coordinates, Stress distribution symmetrical about axis, Strain components in polar coordinates. 4 2 Applications of Energy Methods: Energy Methods: First and Second theorems, Castigliano's theorem, applications for analysis of loaded members to determine deflections and reactions at support. 6 3 Theory of Torsion: Torsion of Prismatic bars of non-circular cross sections, Thin walled hollow and rectangular cross sections, Saint Venant's theory, Prandtle's membrane analogy, Kelvin's fluid flow analogy, Wraping of cross sections. 6 4 Experimental Stress Analysis: Stress analysis by Mechanical, Optical and electrical strain gauges, strain rosette, whole field methods, Moire fringe method, brittle coatings for strain indication. 6 5 Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending. 6 6 Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of b	Cours	se: Machine Stress Analysis	Mid Semester Examination-I: 15	5 Marks			
End Semester Examination: 50 Marks End Semester Examination (Duration): 02 HrUnitContentsHrs1Theory of Elasticity: Plane Stresses and plane Strain: Plain stress, Plain strain, and stress and strain at a point, differential equations of equilibrium, boundary conditions, compatibility equations, and Airy's stress function. Two dimensional problems in rectangular coordinates: Solutions by polynomials, end effects, Saint Venant's principle. Two dimensional problems in polar coordinates: General equations in polar coordinates, Stress distribution symmetrical about axis, Strain components in polar coordinates.42Applications of Energy Methods: Castigliano's theorem, applications for analysis of loaded members to determine deflections and reactions at support.43Theory of Torsion: Torsion: Torsion of Prismatic bars of non-circular cross sections, Thin walled hollow and rectangular cross sections, Saint Venant's theory, Prandtle's membrane analogy, Kelvin's fluid flow analogy, Wraping of cross sections.64Experimental Stress Analysis: Stress analysis by Mechanical, Optical and electrical strain gauges, strain rosette, whole field methods, Moire fringe method, britle coatings for strain indication.65Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending.66Contact Stresses: stress stress in point contact, stress in bodies in point and6			Mid Semester Examination-II: 15 Marks				
End Semester Examination (Duration): 02 HrUnitContentsHrs1Theory of Elasticity: Plane Stresses and plane Strain: Plain stress, Plain strain, and stress and strain at a point, differential equations of equilibrium, boundary conditions, compatibility equations, and Airy's stress function. Two dimensional problems in rectangular coordinates: Solutions by polynomials, end effects, Saint Venant's principle. Two dimensional problems in polar coordinates: General equations in polar coordinates, Stress distribution symmetrical about axis, Strain components in polar coordinates.42Applications of Energy Methods: First and Second theorems, determine deflections and reactions at support.43Theory of Torsion: Torsion of Prismatic bars of non-circular cross sections, Thin walled hollow and rectangular cross sections, Saint Venant's theory, Prandtle's membrane analogy, Kelvin's fluid flow analogy, Wraping of cross sections.64Experimental Stress Analysis: Stress analysis by Mechanical, Optical and electrical strain gauges, strain rosette, whole field methods, Moire fringe method, brittle coatings for strain indication.65Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending.66Contact Stresses: Hertz's contact stresses, expression for principle stress in bodies in point and6	Lectu	re: 3 Hrs/week					
Unit Contents Hrs 1 Theory of Elasticity: Plane Stresses and plane Strain: Plain stress, Plain strain, and stress and strain at a point, differential equations of equilibrium, boundary conditions, compatibility equations, and Airy's stress function. Two dimensional problems in rectangular coordinates: Solutions by polynomials, end effects, Saint Venant's principle. Two dimensional problems in polar coordinates: General equations in polar coordinates, Stress distribution symmetrical about axis, Strain components in polar coordinates. 4 2 Applications of Energy Methods: First and Second theorems, Castigliano's theorem, applications for analysis of loaded members to determine deflections and reactions at support. 6 3 Theory of Torsion: Torsion of Prismatic bars of non-circular cross sections, Thin walled hollow and rectangular cross sections, Saint Venant's theory, Prandtle's membrane analogy, Kelvin's fluid flow analogy, Wraping of cross sections. 6 4 Experimental Stress Analysis: Stress analysis by Mechanical, Optical and electrical strain gauges, strain rosette, whole field methods, Moire fringe method, brittle coatings for strain indication. 6 5 Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending. 6 6 Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of bodies in point contact, stress in bodies in point and 6							
1 Theory of Elasticity: 8 Plane Stresses and plane Strain: Plain stress, Plain strain, and stress and strain at a point, differential equations of equilibrium, boundary conditions, compatibility equations, and Airy's stress function. 8 Two dimensional problems in rectangular coordinates: Solutions by polynomials, end effects, Saint Venant's principle. Two dimensional problems in polar coordinates: General equations in polar coordinates, Stress distribution symmetrical about axis, Strain components in polar coordinates. 4 2 Applications of Energy Methods: First and Second theorems, Castigliano's theorem, applications for analysis of loaded members to determine deflections and reactions at support. 4 3 Theory of Torsion: Torsion of Prismatic bars of non-circular cross sections, Thin walled hollow and rectangular cross sections, Saint Venant's theory, Prandtle's membrane analogy, Kelvin's fluid flow analogy, Wraping of cross sections. 6 4 Experimental Stress Analysis: Stress analysis by Mechanical, Optical and electrical strain gauges, strain rosette, whole field methods, Moire fringe method, brittle coatings for strain indication. 6 5 Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending. 6 6 Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of bodies in point contact, stress in bodies in point and 6			End Semester Examination (Dur	ration): 02 Hrs			
 Plane Stresses and plane Strain: Plain stress, Plain strain, and stress and strain at a point, differential equations of equilibrium, boundary conditions, compatibility equations, and Airy's stress function. Two dimensional problems in rectangular coordinates: Solutions by polynomials, end effects, Saint Venant's principle. Two dimensional problems in polar coordinates: General equations in polar coordinates, Stress distribution symmetrical about axis, Strain components in polar coordinates. Applications of Energy Methods: First and Second theorems, Castigliano's theorem, applications for analysis of loaded members to determine deflections and reactions at support. Theory of Torsion: Torsion of Prismatic bars of non-circular cross sections, Thin walled hollow and rectangular cross sections, Saint Venant's theory, Prandtle's membrane analogy, Kelvin's fluid flow analogy, Wraping of cross sections. Experimental Stress Analysis: Stress analysis by Mechanical, Optical and electrical strain gauges, strain rosette, whole field methods, Moire fringe method, brittle coatings for strain indication. Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending. Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of bodies in point contact, stress in bodies in point and 	Unit	Contents	I	Hrs			
 Plane Stresses and plane Strain: Plain stress, Plain strain, and stress and strain at a point, differential equations of equilibrium, boundary conditions, compatibility equations, and Airy's stress function. Two dimensional problems in rectangular coordinates: Solutions by polynomials, end effects, Saint Venant's principle. Two dimensional problems in polar coordinates: General equations in polar coordinates, Stress distribution symmetrical about axis, Strain components in polar coordinates. Applications of Energy Methods: First and Second theorems, Castigliano's theorem, applications for analysis of loaded members to determine deflections and reactions at support. Theory of Torsion: Torsion of Prismatic bars of non-circular cross sections, Thin walled hollow and rectangular cross sections, Saint Venant's theory, Prandtle's membrane analogy, Kelvin's fluid flow analogy, Wraping of cross sections. Experimental Stress Analysis: Stress analysis by Mechanical, Optical and electrical strain gauges, strain rosette, whole field methods, Moire fringe method, britte coatings for strain indication. Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending. Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of bodies in point contact, stress in bodies in point and 	1	Theory of Elasticity:		8			
 conditions, compatibility equations, and Airy's stress function. Two dimensional problems in rectangular coordinates: Solutions by polynomials, end effects, Saint Venant's principle. Two dimensional problems in polar coordinates: General equations in polar coordinates, Stress distribution symmetrical about axis, Strain components in polar coordinates. Applications of Energy Methods: First and Second theorems, Castigliano's theorem, applications for analysis of loaded members to determine deflections and reactions at support. Theory of Torsion: Torsion of Prismatic bars of non-circular cross sections, Thin walled hollow and rectangular cross sections, Saint Venant's theory, Prandtle's membrane analogy, Kelvin's fluid flow analogy, Wraping of cross sections. Experimental Stress Analysis: Stress analysis by Mechanical, Optical and electrical strain gauges, strain rosette, whole field methods, Moire fringe method, brittle coatings for strain indication. Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending. Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of bodies in point contact, stress in bodies in point and 			stress, Plain strain, and stress and				
Two dimensional problems in rectangular coordinates: Solutions by polynomials, end effects, Saint Venant's principle. Two dimensional problems in polar coordinates: General equations in polar coordinates, Stress distribution symmetrical about axis, Strain components in polar coordinates.42Applications of Energy Methods: First and Second theorems, Castigliano's theorem, applications for analysis of loaded members to determine deflections and reactions at support.43Theory of Torsion: Torsion of Prismatic bars of non-circular cross sections, Thin walled hollow and rectangular cross sections, Saint Venant's theory, Prandtle's membrane analogy, Kelvin's fluid flow analogy, Wraping of cross sections.64Experimental Stress Analysis: Stress analysis by Mechanical, Optical and electrical strain gauges, strain rosette, whole field methods, Moire fringe method, brittle coatings for strain indication.65Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending.66Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of bodies in point contact, stress in bodies in point and6							
polynomials, end effects, Saint Venant's principle. Two dimensional problems in polar coordinates: General equations in polar coordinates, Stress distribution symmetrical about axis, Strain components in polar coordinates.42Applications of Energy Methods: First and Second theorems, Castigliano's theorem, applications for analysis of loaded members to determine deflections and reactions at support.43Theory of Torsion: Torsion of Prismatic bars of non-circular cross sections, Thin walled hollow and rectangular cross sections, Saint Venant's theory, Prandtle's membrane analogy, Kelvin's fluid flow analogy, Wraping of cross sections.64Experimental Stress Analysis: Stress analysis by Mechanical, Optical and electrical strain gauges, strain rosette, whole field methods, Moire fringe method, brittle coatings for strain indication.65Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending.66Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of bodies in point contact, stress in bodies in point and6		conditions, compatibility equations, and	d Airy's stress function.				
 problems in polar coordinates: General equations in polar coordinates, Stress distribution symmetrical about axis, Strain components in polar coordinates. Applications of Energy Methods: First and Second theorems, Castigliano's theorem, applications for analysis of loaded members to determine deflections and reactions at support. Theory of Torsion: Torsion of Prismatic bars of non-circular cross sections, Thin walled hollow and rectangular cross sections, Saint Venant's theory, Prandtle's membrane analogy, Kelvin's fluid flow analogy, Wraping of cross sections. Experimental Stress Analysis: Stress analysis by Mechanical, Optical and electrical strain gauges, strain rosette, whole field methods, Moire fringe method, brittle coatings for strain indication. Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending. Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of bodies in point contact, stress in bodies in point and 		-	•				
Stress distribution symmetrical about axis, Strain components in polar coordinates.Applications of Energy Methods: First and Second theorems, Castigliano's theorem, applications for analysis of loaded members to determine deflections and reactions at support.43Theory of Torsion: Torsion of Prismatic bars of non-circular cross sections, Thin walled hollow and rectangular cross sections, Saint Venant's theory, Prandtle's membrane analogy, Kelvin's fluid flow analogy, Wraping of cross sections.64Experimental Stress Analysis: Stress analysis by Mechanical, Optical and electrical strain gauges, strain rosette, whole field methods, Moire fringe method, brittle coatings for strain indication.65Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending.66Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of bodies in point contact, stress in bodies in point and6							
coordinates.Applications of Energy Methods: First and Second theorems, Castigliano's theorem, applications for analysis of loaded members to determine deflections and reactions at support.43Theory of Torsion: Torsion of Prismatic bars of non-circular cross sections, Thin walled hollow and rectangular cross sections, Saint 		1 1	1 1				
2Applications of Energy Methods: First and Second theorems, Castigliano's theorem, applications for analysis of loaded members to determine deflections and reactions at support.43Theory of Torsion: Torsion of Prismatic bars of non-circular cross sections, Thin walled hollow and rectangular cross sections, Saint Venant's theory, Prandtle's membrane analogy, Kelvin's fluid flow analogy, Wraping of cross sections.64Experimental Stress Analysis: Stress analysis by Mechanical, Optical and electrical strain gauges, strain rosette, whole field methods, Moire fringe method, brittle coatings for strain indication.65Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending.66Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of bodies in point contact, stress in bodies in point and6		•	axis, Strain components in polar				
 Castigliano's theorem, applications for analysis of loaded members to determine deflections and reactions at support. Theory of Torsion: Torsion of Prismatic bars of non-circular cross sections, Thin walled hollow and rectangular cross sections, Saint Venant's theory, Prandtle's membrane analogy, Kelvin's fluid flow analogy, Wraping of cross sections. Experimental Stress Analysis: Stress analysis by Mechanical, Optical and electrical strain gauges, strain rosette, whole field methods, Moire fringe method, brittle coatings for strain indication. Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending. Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of bodies in point contact, stress in bodies in point and 							
determine deflections and reactions at support.63Theory of Torsion: Torsion of Prismatic bars of non-circular cross sections, Thin walled hollow and rectangular cross sections, Saint Venant's theory, Prandtle's membrane analogy, Kelvin's fluid flow analogy, Wraping of cross sections.64Experimental Stress Analysis: Stress analysis by Mechanical, Optical and electrical strain gauges, strain rosette, whole field methods, Moire fringe method, brittle coatings for strain indication.65Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending.66Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of bodies in point contact, stress in bodies in point and6	2			4			
 3 Theory of Torsion: Torsion of Prismatic bars of non-circular cross sections, Thin walled hollow and rectangular cross sections, Saint Venant's theory, Prandtle's membrane analogy, Kelvin's fluid flow analogy, Wraping of cross sections. 4 Experimental Stress Analysis: Stress analysis by Mechanical, Optical and electrical strain gauges, strain rosette, whole field methods, Moire fringe method, brittle coatings for strain indication. 5 Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending. 6 Contact Stresses: Hertz's contact stresses, expression for principle for stress in bodies in point and 			-				
 sections, Thin walled hollow and rectangular cross sections, Saint Venant's theory, Prandtle's membrane analogy, Kelvin's fluid flow analogy, Wraping of cross sections. Experimental Stress Analysis: Stress analysis by Mechanical, Optical and electrical strain gauges, strain rosette, whole field methods, Moire fringe method, brittle coatings for strain indication. Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending. Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of bodies in point contact, stress in bodies in point and 	-		11	-			
 Venant's theory, Prandtle's membrane analogy, Kelvin's fluid flow analogy, Wraping of cross sections. Experimental Stress Analysis: Stress analysis by Mechanical, Optical and electrical strain gauges, strain rosette, whole field methods, Moire fringe method, brittle coatings for strain indication. Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending. Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of bodies in point contact, stress in bodies in point and 	3	•		6			
 analogy, Wraping of cross sections. 4 Experimental Stress Analysis: Stress analysis by Mechanical, Optical and electrical strain gauges, strain rosette, whole field methods, Moire fringe method, brittle coatings for strain indication. 5 Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending. 6 Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of bodies in point contact, stress in bodies in point and 			0				
 Experimental Stress Analysis: Stress analysis by Mechanical, Optical and electrical strain gauges, strain rosette, whole field methods, Moire fringe method, brittle coatings for strain indication. Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending. Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of bodies in point contact, stress in bodies in point and 		•	ne analogy, Kelvin's fluid flow				
 and electrical strain gauges, strain rosette, whole field methods, Moire fringe method, brittle coatings for strain indication. 5 Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending. 6 Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of bodies in point contact, stress in bodies in point and 	4		s analysis by Mechanical Optical	6			
fringe method, brittle coatings for strain indication.65Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending.66Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of bodies in point contact, stress in bodies in point and6	-	-		U			
 5 Shear Centre and Unsymmetrical Bending: Shear centre for beams of different cross sections, bending and deflections of beams subjected to unsymmetrical bending. 6 Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of bodies in point contact, stress in bodies in point and 							
different cross sections, bending and deflections of beams subjected to unsymmetrical bending. 6 6 Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of bodies in point contact, stress in bodies in point and 6	5			6			
unsymmetrical bending.6Contact Stresses: Hertz's contact stresses, expression for principle stresses, deflection of bodies in point contact, stress in bodies in point and	~	•	8				
6 Contact Stresses: Hertz's contact stresses, expression for principle 6 stresses, deflection of bodies in point contact, stress in bodies in point and							
stresses, deflection of bodies in point contact, stress in bodies in point and	6		stresses, expression for principle	6			
line contacts			· · · · · · · ·				
		line contacts	-				

- 1. Timoshenko and Young, "Theory of Elasticity", TMH Publications
- 2. Seely and Smith, "Advanced Mechanics of Materials", John Wiley, New York.
- 3. Den Hartog J.P., "Advanced Strength of Materials" McGraw Hill Publications.
- 4. Nash W. "Strength of Materials" Schaum's outline series, McGraw Hill Publications.

	Syllabus of M. Tech. (Mee	chanical Engineering) Semester-I	
Cour Teac	se Code: MTM 103 se: Advances in Materials hing Scheme: re: 3 Hrs/week	Credits: 3-0-0 (3) Mid Semester Examination-I: 15 Marks Mid Semester Examination-II: 15 Marks Teacher Assessment: 20 Marks End Semester Examination: 50 Marks	
		End Semester Examination (Duration): 02	2 Hrs
Unit	C	ontents	Hrs.
1	relationship between physical properinteraction and size control, powder and blending, dry and colloidal	tallurgy, characterization of metal powders, erties and particle size/ shape, particle manufacturing techniques, powder mixing processing, reduction, electrolysis and and sintering and other consolidation	8
2	Composite Materials and their Engine Types of composites and their advantal carbon, organic and ceramic fibers, Types of matrix materials: polymer, r properties and processing. Wettable manufacturing and processing technic applications. Mechanical properties, thermal proper- behavior, Fracture, fatigue and creep electrical performance of composites.	ages. Types of reinforcements: glass, boron, their structure, properties and processing. metal and ceramic matrices, their structure, ility and interface bonding. Composite ques. Introduction to Nano-composites and ties and load transfer in composites. Elastic behavior of composites. Tribological and Degradation of composites due to various on resistance of composites. Designing with	10
3	Functional Materials Definition of functional materials. Temperature-sensitive (thermochroic chromic) materials, Self-healing ma magnetorheological fluids, Shape-M materials for computer memory dev	Light-sensitive (photochromic) materials,) materials, Chemical-sensitive (chemo aterials, Magnetic-sensitive materials and lemory Alloys, Invar alloys. Functional vices and optical media storage devices, ications in sensors and actuators, Carbon	6
4	Application of Nanomaterials and N Applications in Biomedical, Solar and Biomedical-Drug delivery, Bone rep adsorption and recovery, Bio-molecule Energy storage and conversion - Super Electronics; Self-cleaning & Self-hea based materials, Agricultural Nanotechnolog	anocomposites Energy storage placement; Sensors – gas sensor, Metal e detectors; capacitors, Solar cells, Energy generators; lling paints, Nano-engineering of cement-	6
5	Materials Characterization, Scope and methods used for materials Need, Working principle, Components	characterization. s, Description and Applications of different	6

	characterization techniques such as Microscopy, Compositional analysis, Chemical analysis, Structural analysis, Thermal analysis, Mechanical property evaluation, Fractography.	
6	Materials Recycling and Waste Management Recycling of different classes of materials, Solid Waste Regulations, Waste generation, Waste characterization, Physical properties of Waste, Waste separation and processing: Composting, Landfills, Incineration, etc.	4

1. Material Science and Engineering: An Introduction by William D. Callister Jr. and David G. Rethwich, Wiley Ltd.

2. Concise Encyclopedia of Magnetic and Superconducting Materials (Advances in Materials Sciences and Engineering)by J. Evetts (ed.), Perganon Press

3. Advances in Materials and their applications by Rama Rao P. (ed)., Wiley Eastern Ltd.

4. Nano: The essentials by Pradeep T., McGraw Hill

5. Nano Technology by Wilson M. et al, Overseas Press

	Syllabus of M. Tech. (Mecha	anical Engineering) Semester-I					
Course	e Code: MTM 104	Credits: 3-0-0 (3)					
Course	e: Advanced Thermodynamics	Mid Semester Examination-I: 15 Marks					
Teachi	ing Scheme:	Mid Semester Examination-II: 15 Marks					
Lecture	e: 3 Hrs/week	Teacher Assessment: 20 Marks					
		End Semester Examination: 50 Marks					
		End Semester Examination (Duration):	2 Hrs				
Unit	Co	ntents	Hrs.				
1	Equation of State: State postulate for simple system and equation of state, ideal gas equation, deviation from ideal gas, equation of state for real gases, generalized compressibility chart, law of corresponding state						
2	Law of Thermodynamics: Equation of the first law of the thermodynamics, application of the first law to Flow & Non Flow system, reversible & irreversible processes with ideal and real gases, Statement of second law, Genralised Carnot cycle, Entropy & Exergy, Free energy and tied energy, Thermodynamics potential functions, Availability, Losses of maximum useful work, Nerst's heat theorem						
3	Changes in States of Gases at their Transferences: Throttling process, Joule Thomson effect, Temperature of braking, Mixtures of ideal & real gases, Mixing of flowing gases, mixing of gases at constant volume.						
4	Thermodynamic Property Relations: Partia	al differentials, Maxwell relations, Clapeyron C_v and C_p , Joules Thomson coefficient, change real gases.	6				
5	Chemical Thermodynamics chemical re formation and enthalpy of combustion, fin flame temperature chemical and phase eq equilibrium constant for ideal gas mixtures,	action- fuels and combustion, enthalpy of est law analysis of reacting systems, adiabatic uilibrium- criterion for chemical equilibrium, some remarks about Kp of ideal gas mixtures, lations. Gibb's phase rule, third law of	6				
6	Kay's rule Statistical Thermodynamics- Fundament Lagrangian multipliers, partition function f	Dalton's law of partial pressure, Amagat's law, tals, equilibrium distribution, significance of for Canonical Ensemble, partition function for energy, Bose Einsten statistics, Fermi-Dirac	6				

- **1.** Thermodynamics, Cengel, TMH
- 2. Basic and Applied Thermodynamics, P.K.Nag, TMH, New Delhi
- 3. Advanced Thermodynamics, Kalyan Annamalai, Ishwar K.Puri., CCRC PRESS
- 4. Thermodynamics, Holman, 4th edition, McGraw Hill
- 5. Engineering Thermodynamics, Jones and Hawkings, Join Wiley and Sons, Inc USA

	Syllabus of M. Tech. (Mechanical Engineering) Semester-I			
Course C	Code: MTM 121	Credits: 3-0-0 (3)		
Course:	Professional Elective-I: Kinematics:	Mid Semester Examination-I: 15 Mar	KS .	
Dynamic	es and Synthesis	Mid Semester Examination-II: 15 Mar	rks	
Teaching	Teaching Scheme:Teacher Assessment: 20 Marks			
Lecture:	3 Hrs/week	End Semester Examination: 50 Marks		
		End Semester Examination (Duration): 02 Hrs	
Units	Con	ntents	Hrs	
1		kinematics and mechanism, degrees of	6	
	freedom, Grubler's criteria, Transmission and deviation angles, Mechanical Advantage			
2	<u> </u>	and dimensional synthesis, Spacing of	6	
	• • • • • •	nials, Motion and function generation,		
		nd four prescribed motions and points,		
3		mber modelling in kinematic synthesis,	6	
	The Dyad synthesis, Standard form, Freudentein's equation for three point			
	function generation coupler curves, Robert's law, Cognates of the slider			
4	crank chain.	moving centrode, inlection points and	6	
4		Equation, Bobillier's and Hartsman	0	
	Construction.	Aquation, Doomier's and Hartsman		
5		tion, Inertia force in linkages, Kineto	6	
	static analysis by superposition and matrix approach, Time response of			
	mechanisms, Force and moment bala			
6	-	to 3-dimentional mechanisms, Planar	6	
		transformation, Analysis of spatial		
	mechanisms			

- 1. Tao D.C., "Fundamentals of applied Kinematics", Addison Wesley, USA 1967
- 2. R. Hartenberg and denavit, "Kinematic Synthesis of Linkages", McGraw Hill
- 3. A.K. Mallik amd A Ghosh, "Kinematic Analysis and Synthesis of Mechanisms", CRC Press
- 4. A. K. Mallik and A. Ghosh, "Theory of Mechanisms", East west Press
- 5. Hirschem J, "Kinematics and Dynamics of Plane Mechanisms", McGraw Hill, NY
- 6. Soni A. H., "Mechanism Synthesis & Analysis", McGraw Hill

	Syllabus of M. Tech. (Mechanical Engineering) Semester-I		
Course C	ode: MTM 122	Credits: 3-0-0 (3)	
Course: Professional Elective-I		Mid Semester Examination-I: 15 Marks	
[Smart Manufacturing] Mid Semester Examination-II: 15 Mark		s	
Teaching	Scheme:	Teacher Assessment: 20 Marks	
Lecture:	3 Hrs/week	End Semester Examination: 50 Marks	
		End Semester Examination (Duration):	02 Hrs
Unit	Contents		Hrs.
Unit-1	Introduction to smart	manufacturing: Smart Manufacturing,	03
	Comparison with conver	tional/legacy manufacturing, Pillars of	
	Smart Manufacturing.		
Unit-2	Introduction to IoT: IoT E	nablers, Characteristics of IoT, Evolution	09
	of Connected Devices, Cor	nmunication Technologies, Protocols, IoT	
	applications, Baseline Technologies, IoT Networks, Sensing:		
	Sensors, transducers, sensor classes, types, sensorial deviations,		
	actuation: actuators, types.		
	Introduction to M2M, Description of M2M Market		
	Segments/Applications – Automotive, Smart Telemetry,		
	Surveillance and Security, M2M Industrial Automation		
Unit-3	Cyber-Physical Systems (C	CPS) in the real world, Basic principles of	06
	design and validation of CPS, IT and OT convergence, digital twins,		
	Cloud Computing , Smart Cloud- Hyper scale Computing; Platform		
	as a service (PaaS) and ag	pplication platform as a service (aPaaS);	
	Intelligent Analytics for sm	hart machines.	
Unit-4	Smart design/fabrication: S	Smart Design/Fabrication - Digital Tools,	06
	Product Representation an	d Exchange Technologies and Standards,	
	Agile (Additive) Manufa	cturing Systems and Standards. Mass	
	Customization, Smart Ma	achine Tools, Robotics and Automation	
	(perception, manipulation,	mobility, autonomy)	
Unit-5	Smart Applications: Onlin	e Predictive Modelling, Monitoring and	06
	Intelligent Control	of Machining/Manufacturing and	

	Logistics/Supply Chain Processes; Smart Energy Management of		
	manufacturing processes and facilities.		
Unit-6	Smart and Empowered Workers: Eliminating Errors and Omissions,		
	Deskilling Operations, Improving Speed/Agility, Improving		
	Information Capture/Traceability, Improving Intelligent Decision		
	Making under uncertainty Assisted/Augmented Production,		
	Assisted/Augmented Assembly, Assisted/Augmented Quality,		
	Assisted/Augmented Maintenance, Assisted/Augmented Warehouse		
	Operations and Assisted Training		

Textbooks

- M. Soroush, M. Baldea, T. Edgar, Smart Manufacturing Concepts and Methods, Elsevier, 1st Edition, 2020, ISBN: 9780128200278
- 2. D. Boswarthick, O. Elloumi, and O. Hersent, M2M communications: A systems approach, Wiley, 1st edition, 2012, ISBN: 978-1119994756.
- A. McEwen and H. Cassimally, Designing the Internet of Things, 1st edition, Wiley, 2013, ISBN-10: 111843062X.
- N. Vengurlekar and P. Bagal, Database Cloud Storage: The Essential Guide to Oracle Automatic Storage Management, 1st edition, McGraw-Hill Education, 2013, ISBN-10: 0071790152.
- M. Kuniavsky, Smart Things: Ubiquitous Computing User Experience Design, 1st edition, Morgan Kaufmann, 2010, ISBN-10: 0123748992.
- 6. E. A. Lee and S. A. Seshia, "Introduction to Embedded Systems: A Cyber-Physical Systems Approach", 2011.
- 7. R. Alur, "Principles of Cyber-Physical Systems," MIT Press, 2015.
- 8. T. D. Lewis "Network Science: Theory and Applications", Wiley, 2009.

References

1. J. Holler et al., From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence, Academic Press, 1st edition, 2014, ISBN: 978-0124076846.

- 2. C. Anton-Haro and M. Dohler, Machine-to-machine (M2M) Communications: Architecture, Performance and Applications, Woodhead Publishing, 1st edition, 2015, ISBN: 978-1782421023.
- 3. P. Tabuada, "Verification and control of hybrid systems: a symbolic approach", Springer-Verlag 2009.
- 4. C. Cassandras, S. Lafortune, "Introduction to Discrete Event Systems", Springer 2007.
- 5. Constance Heitmeyer and Dino Mandrioli, "Formal methods for real-time computing", Wiley publisher, 1996

	Syllabus of M. Tech	n. (Mechanical Engineering) Semester-I	
Course: (Advano Teachin	Code: MTM 123 Professional Elective-I ced Heat Transfer) g Scheme: 3 Hrs/week	Credits: 3-0-0 (3) Mid Semester Examination-I: 15 Marks Mid Semester Examination-II: 15 Marks Teacher Assessment: 20 Marks End Semester Examination: 50 Marks End Semester Examination (Duration): 02 Hrs	S
UNIT	Contents		Hrs
01	applications, Heat conduct with uniform heat generat	ferent Modes of Heat Transfer , Heat Transfer ion with heat generation Plane wall and cylinder ion, applications. Two-dimensional steady state and finite plates, Combined mechanisms of Heat	04
02	Heat Transfer through extended surfaces: Classification of fins, Steady state analysis and optimization, radial fins of rectangular and hyperbolic profiles longitudinal fin of rectangular profile radiating to free space. Design analysis of fin		07
03	Transient heat conduction Lumped system analysis-1D Transient Heat Conduction – Heisler charts- semi-infinite solid-use of shape factors in conduction. Finite Difference Methods for Conduction: ID & 2D steady state and simple transient heat conduction problems-implicit and explicit methods. Periodic heat flow, Systems with Negligible Surface Resistance		07
04	Radiation heat transfer: radiation effect on tempe participating medium, en mixtures, heat transfer fr overall heat transfer in fur	Laws of radiation, Nature of thermal radiation, rature measurements, radiation properties of a hissivity and absorptivity of gases and gases rom the human body, radiative exchange and maces, Electrical Network Analogy for Thermal tion Between Two Black Isothermal Surfaces,	04
05	Convective Heat Transfer Concept of velocity, There Equations of fluid flow derivation of energy er coefficient: Analytical met solution. Approximate met a flat plate: integral met different velocity and temp	mal boundary layer, Laminar and turbulent flow concepts of continuity, momentum equations- quation-methods to determine heat transfer chods-dimensional analysis and concept of exact hod-integral analysis. External Flows: Flow over thod for laminar heat transfer coefficient for erature profiles.	07
06	for different regimes — C Nusselts theory of film co		07

Transfer: Radiant heat exchange in grey, non-grey bodies, with
transmitting. Reflecting and absorbing media, specular surfaces. Flow
boiling, turbulent film wise condensation

- 1. Heat Transfer-S. P. Sukhatme Universities Press
- 2. Fundamentals of Engineering Heat Transfer-R.C. Sachdeva-New age Science.
- 3. Heat Transfer/ P. K. Nag /TMH
- 4. Engg. Heat & Mass Transfer/ Sarit K. Das/Dhanpat Rai
- 5. Introduction to Heat Transfer/SK Som/PHI
- 6. Holman J.P. Heat Transfer Tata McGraw Hill

Syllabus of M. Tech. (Mechanical Engineering) Semester-I			
Course Code: MTM 111	Credits: 0-0-1		
Course: Seminar	Term-work: 25 Marks		
Teaching Scheme:			
Practical: 02 Hr/week			
Lab work consists of two parts as below			
Part A: The candidate will deliver an industrial case study in front of two examiners (one internal			

and other appointed by the principal)

Part B: Assignments shall be based on five theory subjects of semester (one on each course). The marks will be awarded by the concerned course teacher.

Syllabus of M. Tech. (Mechanical Engineering) Semester-I		
Course Code: MTM 112	Credits: 0-0-1	
Course: LabII	Term-work: 25 Marks	
Teaching Scheme:		
Practical: 02 Hr/week		
Course Content:		
The lab work consists of the assignments/experiments related to		
Introduction to ANSYS Software		
1. Modelling of structure using line element		
2. Modelling of two and three dimensional machine components.		
3. Mesh generation of solid part		
4. Static structural analysis of machine component		
5. Transient structural analysis of machine components		
6. Steady state thermal analysis of machine components		
7. Buckling analysis of machine components		
8. Modal analysis of machine components		

Syllabus of M. Tech. (Mechanical Engineering) Semester-I		
Course Code: MTM 113	Credits: 0-0-1	
Course: Lab-III	Term work: 25 Marks	
[Introduction to Matlab Programming]		
Teaching Scheme:		
Practical: 02 Hr/week Course Content:		
The lab work consists of the assignments/expe	riments related to	
Introduction to MATLAB Software		
1. MATLAB window: Command windo	ow, Workspace, Command history, setting directory,	
Working with the MATLAB user inter	face	
2. Basic commands, Assigning variables, Operations with variables		
3. Data Types: Character and string, Arrays and vectors, Column vectors, Row vectors		
4. Basic Mathematics: BODMAS Rules, Arithmetic operations, Operators and special		
characters, Mathematical and logical o	perators, Solving arithmetic equations	
5. Operations on matrix: Crating rows and columns Matrix, Matrix operations, Finding		
transpose, determinant and inverse, So	lving matrix	
6. Other operations: Trigonometric fun	ctions, Complex numbers, fractions, Real numbers,	
Complex numbers		
7. Plots: Plotting vector and matrix data	, Plot labelling, curve labelling and editing, 2D plots:	
Basic Plotting Functions, Creating a	a Plot, Plotting Multiple Data Sets in One Graph,	
Specifying Line Styles and Colors	, Graphing Imaginary and Complex Data, Figure	
Windows, Displaying Multiple Plots in One Figure, Controlling the Axes		

Syllabus of M. Tech. (Mechanical Engineering) Semester-I		
Course Code: MTM 114 Credits: 0-0-2		
Course: Seminar	Viva voce: 50 Marks	
Teaching Scheme:		
Practical: 04 Hr/week		

Seminar 1: It shall be based on the literature survey on any topic, which may lead to dissertation in that area. It will be submitted as a report.

The candidate will have to deliver a seminar presentation before the examiners, one of them will be guide and other will be examiner appointed by the university.

	Syllabus of M. Tech. (Mecha	anical Engineering) Semester-II	
Course (Code: MTM 141	Credits: 3-1-0 (4)	
Course: Advanced Optimization		Mid Semester Examination-I: 15 Ma	ırks
Techniqu	Techniques Mid Semester Examination-II: 15 Ma		larks
Teaching	Scheme:	Teacher Assessment: 20 Marks	
Lecture:	3 Hrs/week	End Semester Examination: 50 Mark	KS
Tutorial:	1 Hr/week	End Semester Examination (Duration	on): 02 Hrs
			·
Units	Contents		Hrs
1	Introduction: Optimal Problem Fo	rmulation, engineering optimizations	6
	Problems, Optimization Algorithms		
	Single Variable Optimization Algorithms: Optimality criteria,		
	bracketing methods, region elimination methods, point estimation		
		, root finding using optimization	
	techniques,		
2	-	Algorithms: optimality criteria,	6
2	unidirectional search, direct search n		
3		orithms: Kuhn-Tucker conditions, vity Analysis, direct search for	6
	transformation methods, Sensitivity Analysis, direct search for constrained minimization, linearized search techniques, feasible direction		
	method, generalized reduced gradient method, gradient projection method		
4		zy logic: Fuzzy sets and membership	6
		, fuzzy relations, rules, propositions,	-
		zzification techniques, fuzzy logic	
	controller design, some applications	of fuzzy logic.	
5		s: Integer programming, geometric	6
	programming, Genetic Algorithm	, e	
	optimization, ant colony optimization		
6		arch: Linear Programming Problems,	6
	▲ · · ·	le technique, dual phase method,	
	sensitivity analysis		

- 1. Deb Kalyanmoy, "Optimization in Engineering Design", PHI, New Delhi.
- 2. Rao S.S., "Engineering Optimization", John Wiley, New Delhi
- 3. Deb Kalyanmoy, "Multi-Objective Algorithms using Evolutionay Algorithms", John Wiley, New Delhi.
- 4. Paplambross P. Y. and Wilde D. J., "Principls of Optimum Design: Modelling and Computation, Cambridge University Press, UK
- 5. Chandupatla, "Optimization in Design", PHI New Delhi.

Syllabus of M. Tech. (Mechanical Engineering) Semester-II			
Course Code: N	ITM 142	Credits: 3-0-0 (3)	
Course: Advanced Machine Design Mid Semester Examination-I: 15 Marks			
Teaching Schen	ne:	Mid Semester Examination-II: 15 Marks	
Lecture: 3 Hrs/v		Teacher Assessment: 20 Marks	
		End Semester Examination: 50 Marks	
		End Semester Examination (Duration): 02	2 Hrs
Unit Content	5		Hrs
Fundam	entals of Design Conside	erations: Principal Planes and Principal	
1 Stresses,	tri-axial state of stresses, Mo	ohr's circle for tri-axial state of stresses and	8
strains,	volumetric strains, Principal	stresses computed from Principal strains,	o
Principal	strains due to perpendicular	stresses and shear stresses.	
Mechan	ical Springs: Design of s	quare or rectangular bar helical springs,	
2 Belleville	e springs, ring springs, torsion	n bar springs, theory of square or rectangular	6
bars heli	cal springs under axial loading	g, cone, or flat disc spring theory.	
	· · · · · · · · · · · · · · · · · · ·	es of failure in Shafts and Axles and Stresses	
•		axles, Methods of Manufacturing of Shafts,	6
Designin	Designing of Straight Shafts, Pure Torsional Load, Designing for Rigidity and		v
	Design of Axles, Flexible Sh		
		mination, calculating cam profiles, advance	
		high speed cam systems, surface materials,	6
,	stresses, and accuracy, ramps.		
	-	echanics approach to design, Causes and	
-	-	behavior; rupture theory; creep in high	6
	ure low cycle fatigue; designi		
		Philosophy of Computer Aided Machine	
-	-	Basic advantage of analysis Software, Design	4
		rs, temporary fasteners, permanent fasteners,	-
Beference Book	ropes) through Interactive pr	ogramming.	

- 1. L.S. Srinath, "Advanced Solid Mechanics", TMH Publications
- 2. V Ramamurti, "Computer Aided Machine Design and Analysis", Third edition, Tata McGraw Hill Publications
- 3. Wahl A.M., "Mechanical Springs".
- 4. Rothbart John, "Cam" Wiley and sons
- 5. Sidebottom Borosi, "Advanced Mechanics of Materials" John wily and sons Pub.
- 6. Smith Seely, "Advanced Mechanics of Materials" John wily and sons Pub
- 7. Timoshenko, "Strength of Materials"
- 8. Kocanda "Fatigue Failure of Metals", Sijthoff & Noordhoff International Publication
- 9. Behan & Crawford, "Mechanics of Engineering Materials", John wily and sons Pub.
- 10. Spotts M.F., "Mechanical Design Analysis", PHI Publications, New Delhi.

11. R.C. Juvinall, "Fundamentals of Machine Component Design".

	Syllabus of M. Tech. (Mechanical Engineering) Semester-II			
Cours	se Code: MTM 143	Credits: 3-0-0 (3)		
Cours	Durse: Advanced Manufacturing Mid Semester Examination-I: 15 Marks			
Proce	sses	Mid Semester Examination-II: 15 Marks		
Teach	ing Scheme:	Teacher Assessment: 20 Marks		
Lectur	ce: 3 Hrs/week	End Semester Examination: 50 Marks		
		End Semester Examination (Duration): 02	2 Hrs	
Unit	Contents		Hrs	
	Advanced Casting Processes			
1	Vacuum mould casting, Evaporative pattern casting, Ceramic shell casting, Counter-gravity flow - pressure casting, Semisolid metal casting, Rheocasting.			
2	Advanced Metal Forming Processes Details of high energy rate forming (HERF) process, Electro-magnetic forming, explosive forming, electro-hydraulic forming, stretch forming, contour roll forming.		6	
3	Advanced Welding Process EBW, LBW, USW, Explosion welding, ESW and EGW, Cold pressure welding, FSW, UWW: wet and dry. Automation in welding, Remote welding, Robotic welding, Gravity welding and Fire cracker welding, selecting welding system.		6	
4	Surface Treatment Scope, Cleaners, Methods of cleaning, Surface coating types, Economics of coating, CVD, PVD, Thermal spray coating, Ion implantation, Diffusion coating, Diamond coating and cladding.		6	
5	Non-conventional Machining Processes Introduction, Need, Process capabilities, Parametric analysis, Advantages and Disadvantages, Applications of: AJM, WJM, USM, EDM, WEDM, LBM, ECM, ECG, CHM, PAM.			
6	• •	Etching techniques: wet etch and dry etch, Additive Manufacturing, 3-D Printing.	6	

- 1. Manufacturing Processes for Engineering Materials by Serope Kalpakjian and Steven R. Schmid, Pearson Education India.
- 2. Manufacturing Processes and Systems by Philip F. Ostwald and Jairo Munoz, Wiley Student Edition.
- 3. Manufacturing Technology: Foundry, Forming and Welding by P. N. Rao, McGraw Hill Education.
- 4. The 3D Printing Handbook: Technologies, Design and Applications by 3D Hubs.
- 5. Handbook of Hard Coatings by Elsevier.

	Syllabus of M. Tech. (Mechanical Engineering) Semester-II		
Course Code: MTM 144 Cr		Credits: 3-0-0 (3)	
Course: Computational Fluid Dynamics		Mid Semester Examination-I: 15 Marks	
Teaching Scheme:		Mid Semester Examination-II: 15 Marks	
Lecture: 3 Hrs/week		Teacher Assessment: 20 Marks	
		End Semester Examination: 50 Marks	
		End Semester Examination (Duration): 02	2 Hrs
Unit	C	ontents	Hrs.
1	convective forms of the equations a	mass; momentum and energy equations; nd general description. Classification and assification into various types of equation;	6
2	Classification of Physical Behaviour: Classification of fluid flow equations, auxiliary conditions for viscous fluid flow equations. Implementation of boundary condition Turbulence and its Modelling: Transition from laminar to turbulent flow, effect of turbulence on time averaged Navier Stoke equation, Characteristics of simple turbulent flow, Free turbulent flows, Flat plate boundary layer, pipe flow, Turbulence model Mixing length model, k-omega, and k-epsilon model.		
3	Numerical Grid Generation: General p generation and types; basic ideas of	rinciples of grid generation Numerical grid transformation and mapping. Elliptic grid , Grid refinement, Adaptive grids, Moving	6
4	Finite difference discretization Elementary finite difference coefficients, basic aspects of finite difference equations, consistency, explicit and implicit methods, errors and stability analysis. Fundamentals of fluid flow modeling-conservative property, upwind scheme, transporting property. Finite difference applications in heat transfer – conduction, convection.		6
5	convection problems, NS equations -	, Application of FVM in diffusion and - staggered grid, collocated grid, SIMPLE or unsteady problems – explicit schemes,	6
6	Aviation, biomedical engineering, c	Code, Application of CFD in Automobile, ombustion, food industry etc. and basic various commercial softwares ANSYS, D.	6

Text Books:

1. Ferziger J. H., Springer P.M, "Computational Methods for fluid Dynamics", Verlag Berlin

- 2. Anderson J. D. JR, "Computational fluid Dynamics", Mc Graw Hill Inc, 1995
- 3. Introduction to Computational Fluid dynamics Finite Volume Method H.S. Versteeg and W. Malalasekera, Pearson, Prentice Hall 2007.
- 4. Patankar S. P, "Numerical Heat Transfer & Fluid flow"
- 5. Sunderarajan M.K., "Computational Fluid Flow and Heat Transfer", 2nd Ed, Narosa Publishing

References

- 1. Computational Fluid Dynamics and Heat Transfer by Tenehill J C and Pletcher R H
- 2. Computational Fluid Dynamics Paperback by Gautam Biswas and Somenath Mukherjee
- 3. Computational Fluid Dynamics: A Practical Approach- by Tu A Practical Approach Kindle Edition by Jiyuan Tu, Guan Heng Yeoh and Chaoqun Liu
- 4. Fluid Dynamics: Part 1: Classical Fluid Dynamics- by Anatoly I Ruban and Jitesh S B Gajjar.

	Syllabus of M. Tech. (Mechanical Engineering) Semester-II		
Course Code: MTM 161		Credits: 3-0-0 (3)	
Course: Professional Elective-II		Mid Semester Examination-I: 15 Marks	
(Finite H	Element Method)	Mid Semester Examination-II: 15 Marks	
Teaching Scheme:Teacher Assessment: 20 Marks			
Lecture:	3 Hrs/week	End Semester Examination: 50 Marks	
		End Semester Examination (Duration): 02 Hrs
Unit		Contents	Hrs.
1	Introduction to Finite Difference Method and Finite Element Method, Advantages and disadvantages, Mathematical formulation of FEM, Variational (Rayleigh-Ritz) Method, Potential Energy Method, Weighted Residual (Galerkin) Approach, Weighted Residual (Least Squares) Approach.		06 Hrs
2	Shape functions, Natural co-ordinate system, Element and global stiffnessmatrix, Boundary conditions Errors, Convergence and patch test, Higherorder elements.		06 Hrs
3	Applications: problems of structural mechanics and solid mechanics, Plane stress and plane strain problem, 3-D problems. Torsion, bending of plates and shells,		
4	FE formulation for vibration, heat transfer, and fluid flow problems.04 Hrs		
5	Application of the method to materially non-linear bending of straight beams and elastic plates problems, associated flowcharts and computer programming, Data preparation and mesh generation through computer graphics, Numerical techniques, 3D problems.		
6	FEM an essential components of CAD, Use of commercial FEM packages, ANSYS Software and MATLAB Programs for Finite Element Analysis, Comparison with conventional analysis.06 Hrs		

- 1. Introduction to Finite Elements in Engineering, T.R. Chandrupatla & A.D. Belegundu, Prentice Hall India.
- 2. An Introduction to the Finite Element Method, Reddy.J.N, McGraw-Hill
- 3. The Finite Element Method, O.C.Zienkiewicz, R.L.Taylor, McGraw-Hill
- 4. The Finite Element Method in Engineering, S.S.Rao, Elmsford, Pergamon, Butterworth– Heinemann publications.
- 5. Introduction to the Finite Element Method: A Numerical Method for Engineering Analysis, Desai.C.S and Abel.J.F
- 6. Concepts and application of Finite Element Analysis, R.D.Cook, D.S.Malcus and M.E. Plesha, John Wiley

	Syllabus of M. Tech. (Mechanical Engineering) Semester-II		
Course Code: MTM 162 Credits: 3-0		Credits: 3-0-0 (3)	
Course: Professional Elective-II (Reliability and Maintenance Engineering)Mid Semester Examination-I: 15 MarksTeaching Scheme:Teacher Assessment: 20 Marks			
		Lecture	Lecture: 3 Hrs/week End Semester Examination: 50 Marks
T T •/		End Semester Examination (Duration):	
Unit		ntents	Hrs.
1		patterns of failure, reliability Management,	6
	reliability, for system effectiveness.		
	Reliability and hazard rates: Failure dat	ta, reliability function, failure rate and hazard	
	rate, common distributions in failure mecha	nisms - exponential, Weibull, gamma, Normal,	
	log normal.		
2	System Reliability: Series, parallel and r	nixed configurations. High level vs low level	6
	redundancy, k-out-of-n-structure, complex configurations. Economics of introducing a		
	standby or redundancy into a production system, optimum design configuration of a		
	series/parallel system: maximizing reliability subject to budgetary constraint optimum		
	level of active parallel redundancy for an eq	uipment with components subject to failure.	
3	Design for Reliability: Reliability Specifications and System Measurements, reliability 6		6
	allocation, failure analysis, reliability impr	ovement, selection of components to improve	
	system reliability		
	Reliability Testing: Product Testing, I	Reliability Life Testing, Burn –In Testing,	
	Accelerated Life testing.		
4	Maintenance Engineering: Fundamentals of Maintenance Engineering, importance of 6		6
	Maintenance, types of maintenance policies: corrective maintenance, preventive		
	maintenance, condition monitoring and its t	echniques.	
5	Emerging trends in maintenance-Proactiv	ve Maintenance, Total Productive Maintenance	6
	(TPM). Reliability Centered Maintenance	(RCM), RCM approach, RCM methodology,	
	Application of RCM: examples and comput	ers implementation.	
6	Replacement Decisions: Economic model	s, block replacement policy, age replacement	6
	policy, replacement policies to minimize do	wntime, economics of preventive maintenance.	

- 1. An Introduction to Reliability and Maintainability Engineering (Second Edition) by Charles E. Ebeling, TMH Publication, New Delhi.
- 2. Reliability in Engineering (Fourth Edition) by L. S. Srinath, Affiliated East West Press.
- Terotechnology: Reliability Engineering & Maintenance Management (First Edition) by S. K. Basu and B. Bhadury - Asian Books Private Limited
- 4. Maintenance, Replacement and Reliability- Theory and Applications (Second Edition) by A.K.S. Jardine and A.H.C. Tsang, CRC Press, Taylor and Francis, New York.
- 5. Maintainability, Maintenance and Reliability for Engineers (First Edition) by B.S. Dhillon, CRC Press, Taylor and Francis, New York.

Additional References

- 1. Reliability Engineering by E.A. Elsayed, John Wiley & Sons, Inc, New Jersey
- 2. Reliability Engineering-Specification and Performance, Springer -- Verlag London Limited
- 3. https://swayam.gov.in/
- 4. https://ocw.mit.edu/
- 5. https://see.stanford.edu/
- 6. Reliability Engineering and System Safety (Elsevier)
- 7. International Journal of Reliability, Quality and Safety Engineering (World Scientific Publishing Company)
- 8. International Journal of Performability Engineering (RAMS Consultant)
- 9. Quality and Reliability Engineering International (Wiley Online Library)
- 10. Reliability Engineering (Elsevier)
- 11. Journal of Quality in Maintenance Engineering (Emerald)

	Syllabus of M. Tech. (Mechanical Engineering) Semester-II		
Course Code: MTM 163 Course: Professional Electives-II		Credits: 3-0-0 (3) Mid Semester Examination-I: 15 Marks	
(Refrigeration and Cryogenics)		Mid Semester Examination-II: 15 Marks	
Teaching Scheme:		Teacher Assessment: 20 Marks	
	e: 3 Hrs/week	End Semester Examination: 50 Marks	
		End Semester Examination (Duration): 02	2 Hrs
Unit	С	ontents	Hrs.
1	Refrigeration cycles – analysis: Development of Vapor Compression Refrigeration Cycle from Reverse Carnot Cycle- conditions for high COP-deviations from ideal vapor compression cycle, Multi-pressure Systems, Cascade Systems-Analysis.		6
2	Main system components: Compressor- Types, performance, Characteristics of Reciprocating Compressors, Capacity Control, Types of Evaporators & Condensers and their functional aspects, Expansion Devices and their Behavior with fluctuating load.		6
3	Refrigerants:ClassificationofRefrigerants,Refrigerantproperties,OilCompatibility,Environmental Impact-Montreal/Kyotoprotocols-EcoFriendly6Refrigerants.Different Types of Refrigeration Tools,Evacuation and Charging0Unit,Recovery andRecycling Unit,Vacuum Pumps.		6
4	Other refrigeration cycles: Vapor Absorption Systems-Aqua Ammonia & Li-BrSystems, Steam Jet Refrigeration Thermo Electric Refrigeration, Air Refrigeration6cycles.		6
5	Principle and Methods of production of low temperature and their analysis: Joule Thomson Expansion, Cascade processes, Linde -Hampson cycles, Claude and cascaded systems, magnetic cooling, Stirling Cycle Cryocoolers, Philips refrigerators, Pulse tube refrigerators		
6	Factors contributing to food spoilage, food freezing, Food processing/pres Refrigeration methods for transport Cryogenic Systems: Medical appli	yogenics: Introduction, Food preservation, Methods of food preservation, Method of servation by refrigeration, Cold storage, c, Domestic refrigerators, Water coolers cations, Space applications, Production activity, Magnetic levitation (descriptive	6

Text Books:

- 1. Refrigeration and Air Conditioning C.P. Arora Tata McGraw Hill, 3rd Edition, 2010
- 2. Refrigeration and Air Conditioning Manohar Prasad Prentice-Hall India
- 3. Refrigeration and Air Conditioning P.L.Ballaney Khanna Publisher
- 4. Refrigeration and Airconditioning S.C. Arora and S. Domkundwar Dhanpat Rai and Co.(P) ltd., New Delhi
- 5. Fundamentals of Cryogenic Engineering Manta Mukhopadhyay, PHB learning Private limited

References

- 5. ASHRAE Handbook, Fundamentals, 2013 ASHRAE ASHRAE
- 6. Principles of Refrigeration Roy J.Dossat Wiley Eastern Limited, New Delhi
- 7. Basic Refrigeration and Air conditioning P.N. Ananthanarayan McGraw Hill Publishing Company Ltd., New Delhi, 3rd edition
- 8. Industrial Refrigeration Handbook W.F. Stoecker McGraw Hill Publishing Company Ltd., New Delhi,
- 9. Cryogenic Systems Randall F. Baron Oxford University Press, New York, Clarendon Press, Oxford (1985)

Syllabus of M. Tech. (Mechanical Engineering) Semester-II		
Course Code: MTM 151	Credits: 0-1-0 (1)	
Course: Lab IV	Term-work: 25 Marks	
Teaching Scheme:		
Practical: 2 Hrs/week		
The lab work consists of the assignments/experiments related to		
Part-A: Selection of a case study on design of experiment		
Part-B: Optimization of the experiment using any DOE software such as Minitab, SPSS etc.		

Syllabus of M. Tech. (Mechanical Engineering) Semester-II	
Course Code: MTM 152 Credits: 0-0-1	
Course: Lab-V	Term work: 25 Marks
Teaching Scheme:	
Practical: 02 Hr/week	

The set of tutorials designed to provide the student with the necessary tools for using sophisticated commercial Ansys fluent CFD software. A set of laboratory tasks will take the student through a series of increasingly complex flow and heat transfer simulations, requiring an understanding of the basic theory of computational fluid dynamics (CFD). At the end of the course each student will have to complete a mini project.

- 1. Perform numerical analysis on flow through pipe with varying Reynolds Number.
- 2. Calculate hydrodynamic length and boundary layer thickness for pipe flow numerically
- 3. Calculate lift and drag co-efficient for a cylinder by using numerical analysis.
- 4. Calculate variation of lift and drag co-efficient for an airfoil with varying angle.
- 5. Understand the behavior of Creeping flow by numerical simulation.
- 6. Case study based on course of CFD

Syllabus of M. Tech. (Mechanical Engineering) Semester-II		
Course Code: MTM 153	Credits: 0-0-1	
Course: Lab-VI	Term work: 25 Marks	
[Advanced Matlab Programming]		
Teaching Scheme:		
Practical: 02 Hr/week		
Course Content:		
The lab work consists of the assignments/expe	sriments related to	
Programming in MATLAB Software		
1. GUI Design: Introduction of Graph	hical User Interface, GUI Function Property, GUI	
Component Design, GUI Container, W	/riting the code of GUI Callback	
2. MATLAB Programming: Automating commands with scripts, Writing programs with logic		
and flow control, Writing functions, Control statement Programming, Conditional Statement		
Programming, Examples		
3. Loops and Conditional Statements: Co	3. Loops and Conditional Statements: Control Flow Conditional Control — if, else, switch	
Loop Control — for, while, continue, break		
Program Termination — return		
4. Functions: Writing user defined functions, Built in Function, Function calling, Return Value,		
Types of Functions, Global Variables		
5. MATLAB Toolbox: Optimization T	oolbox, Fuzzy logic Toolbox, Global Optimization	
Toolbox, Neural Network Toolbox, St	atistics and Machine Learning Tool Box.	
6. Introduction to Simulink		

Syllabus of M. Tech. (Mechanical Engineering) Semester-III		
Course Code: MTM 201	Credits: 3-0-0	
Course: MOOC	End Semester Exam: 100 Marks	
Course Scheme: Online Course		
(Minimum 12 Weeks)		
It is mandatory for the student to complete one MOOC course related to the program of study. The		
student will have to complete the MOOC course which will be available on the SWAVAM portal		

student will have to complete the MOOC course which will be available on the SWAYAM portal (Free online education portal). Registered MOOC courses should not have similar or overlapping content to that of the regular courses in the curriculum of the program. The credits can be given to the students after successful completion of the MOOC course of 12 weeks or more.

The credits will be transferred by the evaluation in terms of assignments or examinations or vivavoce. In case the student is unable to clear MOOC Course examination, the student will have to appear for an Institute-level examination for the respective MOOC course.

Syllabus of M. Tech. (Mechanical Engineering) Semester-III

Course Code: MTM 211 Course: Dissertation-I Teaching Scheme: Practical: 18 Hr/week Credits: 0-9-0 Term-work: 50 Marks Viva voce: 100 Marks

The dissertation shall consist of a report on any research work done by the candidate or a comprehensive and critical review of any recent development in the subject or detailed report of the project work consisting of a design and /or development work that the candidate has executed. The report must include comprehensive literature work on the topic selected for dissertation.

Term-work: The dissertation part-I will be in the form of seminar report on the project work being carried out by the candidate and will be assessed by two examiners appointed by the university, one of whom will be the guide and other will be a senior faculty member from the department.

Viva Voce: The dissertation part-I will be in the form of seminar report on the project work being carried out by the candidate and will be assessed by two examiners appointed by the university, one of whom will be the guide and other will be an external examiner.

Syllabus of M. Tech. (Mechanical Engineering) Semester-IV	
Course Code: MTM 251	Credits: 0-12-0
Course: Dissertation-II	Term-work: 100 Marks
Teaching Scheme:	Viva voce: 100 Marks
Practical: 24 Hr/week	

The dissertation part-II will be in continuation of dissertation part-I and shall consists of a report on the research work done by the candidate or a comprehensive and critical review of any recent development in the subject or detailed report of the project work consisting of a design and /or development work that the candidate has executed. The examinee shall submit the dissertation in triplicate to the head of the institution duly certified by the guide and the concerned head of the department and the Principal that the work has been satisfactorily completed.

Term-work:

The dissertation will be assessed by two examiners appointed by the university, one of whom will be the guide and other will be a senior faculty member from the department.

Viva-Voce:

It shall be consists of a defense presented by the examinee on his research work in the presence of the examiners appointed by the university, one of whom will be the guide and other will be an external examiner.