

MAHARASHTRA INSTITUTE OF TECHNOLOGY, AURANGABD

An Autonomous Institute Affiliated to Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra (India)

First Year B.Tech. Syllabus (Group-A) 2021-22

	F. Y. B. Tech. Syllabus Structure w.e.f. 2021-22													
	Grou	ıp A (Agricult	tural Engineering, Civil Enginee	ring, N	/lecha	anical l	Engineerin	g, Plast	ic and I	Polymer	Engine	eering)		
Sr. No	Course Category	Course Code	Course Title	L	Т	P	Contact Hr /Wk	Credits	MSE-I	МЅЕ-П	CIE	TA	ESE/ Oral	Total
		Founda	tion Program/SIP: 3 Week Duration											
1.1	BSC	BSC101	Calculus and Differential Equations	3	-	i	3	3	15	15	10	10	50	100
1.2	HSMC	HSM101	Engineering Exploration	1	-	4	5	3	25	25	10	10	30	100
1.3	ESC	ESC101	C-Programming	3	-	-	3	3	15	15	10	10	50	100
1.4	ESC	ESC102/ ESC103	BME/BCE	3	-	1	3	3	15	15	10	10	50	100
1.5	BSC	BSC102 - BSC104	Open Elective-I	3	-	-	3	3	15	15	10	10	50	100
1.6	ESC	ESC201	Lab-I: C-Programming	-	-	2	2	1	-	-	-	-	25	25
1.7	ESC	ESC202- ESC203	Lab-II: BME/BCE	-	-	2	2	1	-	-	-	-	25	25
1.8	BSC	BSC201 - BSC203	Lab-III: Open Elective-I	-	-	2	2	1	-	-	-	25	-	25
1.9	ESC	ESC204	Lab-IV: Workshop	-	-	2	2	1	-	-	-	25	-	25
1.10	ESC	ESC205	Lab-V: Engineering Graphics	-	-	2	2	1	-	-	-	-	25	25
1.11	HSMC	HSM201	Lab-VI: Communication Skills	-	-	2	2	1	-	-	-	25	-	25
1.12	ESC	ESC206	Environmental Studies	-	-	2	2		No	n-Credi	t Manda	tory Co	urse	
S1				13	0	18	31	21	85	85	50	125	305	650
Sr. No	Course Category	Course Code	Course Title	L	Т	P	Contact Hr /Wk	Credits	MSE-I	MSE-II	CIE	TA	ESE/ Oral	Total
2.1	BSC						ΣĤ	C	X	M			ESE	1
	250	BSC151	Statistics and Integral Calculus	3	1	1	7) 4	4	15	15	10	10	50 ESE	100
2.2	ESC	BSC151 ESC151		3	1	-								
2.2			Calculus				4	4	15	15	10	10	50	100
	ESC	ESC151	Calculus Python Programming	3	-	-	4 3	4 3	15 15	15 15	10	10	50	100
2.3	ESC ESC	ESC151 ESC152	Calculus Python Programming Engineering Mechanics Electrical and Electronics	3	-	-	3 3	4 3 3	15 15 15	15 15 15	10 10 10	10 10 10	50 50 50	100 100 100
2.3	ESC ESC ESC	ESC151 ESC152 ESC153 BSC102 -	Calculus Python Programming Engineering Mechanics Electrical and Electronics Engineering	3 3	-	-	4 3 3 3 3	4 3 3 3	15 15 15 15	15 15 15 15	10 10 10 10	10 10 10 10	50 50 50 50	100 100 100 100
2.3 2.4 2.5	ESC ESC ESC BSC	ESC151 ESC152 ESC153 BSC102 - BSC104	Calculus Python Programming Engineering Mechanics Electrical and Electronics Engineering Open Elective-II	3 3	-	-	4 3 3 3 3 3	4 3 3 3 3	15 15 15 15 15	15 15 15 15	10 10 10 10	10 10 10 10	50 50 50 50 50	100 100 100 100 100
2.3 2.4 2.5 2.6	ESC ESC ESC BSC ESC	ESC151 ESC152 ESC153 BSC102 - BSC104 ESC251	Calculus Python Programming Engineering Mechanics Electrical and Electronics Engineering Open Elective-II Lab-I: Python Programming Lab-II: Engineering	3 3 3		2	4 3 3 3 3 3 2	4 3 3 3 3	15 15 15 15 15	15 15 15 15 15	10 10 10 10	10 10 10 10 10	50 50 50 50 50 50	100 100 100 100 100 25
2.3 2.4 2.5 2.6 2.7	ESC ESC ESC ESC ESC	ESC151 ESC152 ESC153 BSC102 - BSC104 ESC251 ESC252	Calculus Python Programming Engineering Mechanics Electrical and Electronics Engineering Open Elective-II Lab-I: Python Programming Lab-II: Engineering Mechanics Lab-III: Electrical and	3 3 3	- - - -	- - - 2 2	4 3 3 3 3 2 2	4 3 3 3 3 1	15 15 15 15 15 -	15 15 15 15 15 -	10 10 10 10 10	10 10 10 10 10 - 25	50 50 50 50 50 50	100 100 100 100 100 25 25
2.3 2.4 2.5 2.6 2.7 2.8	ESC ESC BSC ESC ESC ESC	ESC151 ESC152 ESC153 BSC102 - BSC104 ESC251 ESC252 ESC253 BSC201 - BSC203 HSM251	Calculus Python Programming Engineering Mechanics Electrical and Electronics Engineering Open Elective-II Lab-I: Python Programming Lab-II: Engineering Mechanics Lab-III: Electrical and Electronics Engineering Lab-IV: Open Elective-II Lab-V: Cognitive Aptitude	3 3 3	-	- - - 2 2	4 3 3 3 3 2 2 2	4 3 3 3 3 1 1	15 15 15 15 15 -	15 15 15 15 15 -	10 10 10 10 10	10 10 10 10 10 - 25 25	50 50 50 50 50 50 25 -	100 100 100 100 100 25 25 50
2.3 2.4 2.5 2.6 2.7 2.8 2.9	ESC ESC BSC ESC ESC ESC ESC ESC	ESC151 ESC152 ESC153 BSC102 - BSC104 ESC251 ESC252 ESC253 BSC201 - BSC203	Calculus Python Programming Engineering Mechanics Electrical and Electronics Engineering Open Elective-II Lab-I: Python Programming Lab-II: Engineering Mechanics Lab-III: Electrical and Electronics Engineering Lab-IV: Open Elective-II	3 3 3		- - - 2 2 2	4 3 3 3 3 2 2 2	4 3 3 3 3 1 1 1	15 15 15 15	15 15 15 15	10 10 10 10 10 	10 10 10 10 10 - 25 25 25 25	50 50 50 50 50 50 25 -	100 100 100 100 100 25 25 50

Open Elective-I/II

		ESC102	Basics of Mechanical Engineering
BSC102	Engineering Physics		(Compulsory for ME, PPE and AE)
BSC103	Engineering Chemistry	ESC103	Basics of Civil Engineering (Compulsory for CE)
BSC104	Biology for Engineers		
BSC201	Lab-III/IV: Engineering Physics	ESC202	Lab-II: Basics of Mechanical Engineering
BSC202	Lab-III/IV: Engineering Chemistry	ESC203	Lab-II: Basics of Civil Engineering
BSC203	Lab-III/IV: Biology for Engineers		

	Faculty	of Science & Technology				
	Syllabus of F. Y.	B.Tech. All Branches (Semester I)				
Course Code:	BSC101	Credits: 3-0-0				
Course: Calcu	lus and Differential	Mid Semester Examination-I: 15 Marks				
Equations		Mid Semester Examination-II: 15 Marks				
Teaching Scho	eme:	Continuous Internal Evaluation: 10 Marks				
Theory: 03 H	rs/week	Teacher Assessment: 10 Marks				
		End Semester Examination: 50 Marks				
		End Semester Examination (Duration): 2 Hrs				
Prerequisite	Students required the k	nowledge of all basic concepts related to calculus and				
	differential equations.					
Objectives	1. To develop skills a	nd create interest to use mathematics in Engineering &				
	technology					
	2. To know how the	e real word problems governed by the first order				
	differential equations and calculus.					
	3. To understand the	importance of differential calculus and differential				
	equations in Engine	ering & technology.				
		and solving various types of differential equations.				
Unit-I	Differential Calculus	: n th Derivative of Standard functions, Leibnitz's				
	Theorem, Taylor's So	eries, Maclaurin's Series, Indeterminate Forms: L'				
	Hospital's Rule (Witho	ut Proof), Evaluation of Limits. (6 Hrs)				
Unit-II	_	nces, Introduction to Infinite Series, Convergence and				
		Series: p-Series Test, Comparison Test, D' Alembert's				
	Ratio Test, Cauchy's N	<u> </u>				
Unit-III	_	s: Solution of First Order and First Degree Differential				
	Equation: Exact, Linear	and Bernoulli's Equation (Reducible to Linear)				
		(6 Hrs)				
Unit-IV		ential Equations: Application of First Order and First-				
		uations: Electrical Circuit, Mechanics and Orthogonal				
	Trajectories.	(6 Hrs)				
Unit-V		n: Partial Derivatives - Introduction, Homogeneous				
	Functions of Two Va	riables - Euler's Theorem, Implicit Functions, Total				

	Der	ivative, Change of	Variables.		(7 Hrs)				
Unit-VI	App	Applications of Partial Differentiation: Maxima and Minima of Functions of							
	Two	o Variables, Jacobia	ans and Its Properties	S.	(5 Hrs)				
Textbooks /	Sr.	Title	Author	Publication	Edition				
Reference	No.								
Books	1.	Advanced	Louis C. Barrett,	McGraw-Hill	6 th Edition				
		Engineering	Ray Wylie C	Publishing					
		Mathematics		Company Ltd,					
				New Delhi, 2003.					
	2.	Engineering	Venkatraman.	National	4 th edition				
		Mathematics-	M.K	publishing					
		Volume I		company,					
				Chennai, 2008.					
	3.	Higher	Dr. Grewal. B.S.	Khanna	40 th Edition				
		Engineering		Publications,					
		Mathematics		New Delhi, 2007.					
	4.	Advanced	H. K. Dass.	S. Chand And	18 th Edition				
		Engineering		Co. Ltd					
		Mathematics							
	5.	Advanced	Erwin Kreyszig	Willey	10 th Edition				
		Engineering		Eastern Ltd.					
		Mathematics		Mumbai					
	6.	Advanced	M. D. Greenberg	Pearson	2 nd Edition				
		Engineering		Publication					
		Mathematics							
	7.	A Textbook of	Peter O'Neil	Thomson	7 th Edition				
		Engineering		Asia Pvt.					
		Mathematics		Ltd.,					
				Singapore					

	Faculty of Science & Technology				
	Syllabus of F. Y. B.Tech.	All Branches (Semester I)			
Course Code:	HSM101	Credits: 1-0-2			
Course: Engin	eering Exploration	Mid Semester Examination-I: 25 Marks			
Teaching Scho	eme:	Mid Semester Examination-II: 25 Marks			
Theory: 01 Hr	/week	Teacher Assessment: 10 Marks			
Practical: 04 H	Hrs/week	Continuous Internal Evaluation: 10 Marks			
		End Semester Examination: 30 Marks			
		End Semester Examination (Duration): 2 Hrs			
	1. To make student understan	d the role of an Engineer as a problem solver.			
	2. To enable students to but	ild simple systems using engineering design			
Ohiootiyoo	process.				
Objectives	3. To introduce ethical, sustainability perspectives.				
	4. To get students familiar with engineering project management skills.				
	5. To make students explore different aspects of engineering.				
	Engineering and multidisciplinary applications				
	Difference between school and engineering study, difference between				
Unit-I	science and engineering, introduction to industrial revolutions, their key				
Cint-1	characteristics, related case studies evolution and need of multidisciplinary				
	engineering, job roles, skill set	of engineers, engineer and society, challenges			
	towards 21st century				
	Project Management				
Unit-II	Project, key elements of project	et, Project management strategies, Introduction			
	to Agile practices, SCRUM framework, Significance of team work, Project				
	management tools: Checklist,	Timeline, Gantt Chart, project libre (6 Hrs)			
	Engineering Design				
	Engineering Design Process,	problem formulation from need, conceptual			
Unit-III	design, product architecture,	relevant tools for engineering design steps:			
	pairwise comparison chart,	morphological chart, Pugh chart, selection			
	criteria for components, Motor	and battery sizing concepts (15 Hrs)			
Unit-IV	Mechanisms				

	Basic	Basic Components of a Mechanism, structure, Degrees of Freedom or						
	Mobi	lity of a Mechanism,4	Bar Chain, Crank R	ocker Mechanis	m, Slider			
	Crank	Mechanism, Simple Ro	botic Arm building, i	ntroduction to li	nkage			
					(10 Hrs)			
	Platfo	orm Based Developmen	nt					
	Ardui	ino platform, electronic	c component overvie	ew, different va	ariants of			
** ** **	Ardui	ino, Development Envi	ironment of Arduin	o, developing	logic for			
Unit-V	progr	am, creation of flow	charts, mblock co	ding, creating	sketches,			
	interf	acing different I/O with	Arduino, developing i	mechatronics sys	stem			
					(15 Hrs)			
	Docu	ımentation and softwar	re tools					
	Impo	rtance of communication	on in engineering pro	ofession, Signif	icance of			
Unit-VI	docur	documentation, introduction to report writing and presentation: types of						
	presentation, presentation making using software tools (10 Hrs)							
	Sr.							
	No.	Title	Author	Publication	Edition			
	1.	Engineering Design:	C.L. Dym, P.	Wiley	4 th			
		A Project Based	Little	Publication	Edition			
		Introduction						
	2.	Project Design &	Karl Ulrich	McGraw Hill	5 th			
Textbooks/		Development		Publication	Edition			
Reference	3.	Theory of Machines	S. S. Rattan	McGraw Hill	4 th			
Books				Publication	Edition			
	4.	Getting Started with	Massimo	O'Reilly	1 st			
		Arduino	Banzi		Edition			
	5.	Project Management	-	Active.collab	1 st			
		Methodologies and			Edition			
		Framework						
	6.	Manuals and datasheet	s of respective softwa	re and hardware	tools			
1								

	Faculty of Science & Technology				
	Syllabus of F. Y. B.	Tech. All Branches (Semester I)			
Course Code	:: ESC101	Credits: 3-0-0			
Course: C-Pr	rogramming	Mid Semester Examination-I: 15 Marks			
Teaching Sch	heme:	Mid Semester Examination-II: 15 Marks			
Theory: 03	Hrs/week	Continuous Internal Evaluation: 10 Marks			
		Teacher Assessment: 10 Marks			
		End Semester Examination: 50 Marks			
		End Semester Examination (Duration): 2 Hrs			
	Course Objectives:				
	1. To introduce stude	nts to the basic knowledge of programming			
	fundamentals of C language.				
Objectives	2. To impart writing skill of C programming to the students and solving				
	problems.				
	3. To impart the concepts like decision control structures, looping, array,				
	functions, pointers, str	ructure.			
	Programming Language	es: Introduction to programming language, Types of			
	programming language- Machine language, Assembly Language, High Level				
IImit I	Language, compiler, assembler, interpreter, loader, linker, editor.				
Unit-I	Introduction to C: C (Introduction to C: C Character set, Constants, Variables, Keywords and			
	Operators, Basic data typ	es, Type conversion, Instructions, Algorithm, Flow			
	Chart, C program structur	e, Simple C program. (6 Hrs)			
	The Decision control st	tructures: If, if-else, nested if statements, Logical			
Unit-II	operators, conditional oper				
Unit-III	•	ures: While, for and do-while, Break and continue			
	statements, Switch -case st	atement. (6 Hrs) Initialization, One dimensional and Two dimensional			
	arrays, Matrix operations.	ilitialization, One dimensional and 1 wo dimensional			
Unit-IV		ndard Library Functions - strlen(), strcpy(), strcat(),			
	strcmp(), strrev(), etc.	(6 Hrs)			
	5115111p(), 51110 (), 610.	(01113)			

	Func	tions						
	Introduction to function, Uses of functions, Function declaration and definition,							
Unit-V	Scope	e rule of	functions, Call	by value,	Recursion.			
	Point	ters: Introduction to	pointers, Pointer notat	ion, Call by Refere	nce, Passing			
	an array and array elements to a function. (6 Hrs)							
	Struc	ctures:						
Unit-VI	Intro	duction to Structure,	Uses of Structures, D	eclaring a Structur	e, Accessing			
	struct	ture elements, Array o	of structures.		(6 Hrs)			
Textbooks/	Sr.							
Reference	No.	Title	Author	Publication	Edition			
Books	1.	Introduction to	Peter Norton	Tata McGraw	4 th Edition			
	1.	computers	1 ctel Norton	Hill	+ Lattion			
	2.	Let us C	Yeshwanth	ВРВ	8 th Edition			
	2.	Let us C	Kanetkar					
		The C	Kernighan B.W	Pearson				
	3.	Programming	and Ritchie D.M	Education	2 nd Edition			
		language	and Kitchie D.W	Education				
		Duo omomersiss s		Tata McGraw-				
	4.	Programming	Byron S Gottfried	Hill, Schaum's	2 nd Edition			
		with C		Outlines				
	_	Due and marriage in C	E Dalaguero	Tata McGraw	4th 17.4%-			
	5.	Programming in C	E. Balagurusamy	Hill	4 th Edition			
ı	ı	İ	i	1	Ī			

Faculty of Science & Technology
Syllabus of F. Y. B.Tech. Non-Circuit Branches (Semester I)

	Synabus of F. 1. D. Tech. Non-Circuit Branches (Semester 1)					
Course Code:	ESC102	Credits: 3-0-0				
Course: Basics	of Mechanical Engineering	Mid Semester Examination-I: 15 Marks				
Teaching Sche	me:	Mid Semester Examination-II: 15 Marks				
Theory: 03 Hrs	s/week	Continuous Internal Evaluation: 10 Marks				
		Teacher Assessment: 10 Marks				
		End Semester Examination: 50 Marks				
		End Semester Examination (Duration): 2 Hrs				
	1. To understand fundament	al concepts of thermal engineering				
Duono aniaito	2. To study engineering appl	lications of thermal engineering				
Prerequisite	3. To understand working pr	rinciple of machine tools				
	4. To understand the functio	ns of various power transmitting elements				
	1. To study the fundamer	ntal principles and laws of heat transfer and to				
	explore the implications of these principles for system behavior.					
011 4	2. To study, analyse and design heat transfer systems through the application					
Objectives	of these principles.					
	3. To develop the problem-solving skills essential to good engineering					
	practice of heat transfer	in real-world applications.				
Scope & applications of thermodynamics, Macroscopic and microscopic						
	description of matter, Pure and working substance, Thermodynamic system					
	and its types, Thermodynamic state of the system, Thermodynamic properties,					
Unit I	Thermodynamic processes a	and its types, Thermodynamic equilibrium, Zeroth				
	law of thermodynamics Ter	mperature and its measurement, Pressure and its				
	measurement, Numerical	on pressure measurement and temperature				
	measurement.	(4 Hrs)				
	Introduction to forms of	energy and non-conventional energy sources,				
	Thermodynamic definition of	of work, types of work, quasi static process, P.dV				
Unit II	work for different processes	s, Definition of heat, specific heat, Modes of heat				
	transfer, Laws governing the	he modes of heat transfer, Comparison between				
	heat & work, Statement of	First law of thermodynamics for open and closed				
L	L					

	arrata	ma Numarical on tumos of vyor	ulr and mades of ha	at tuan afan				
	systems, Numerical on types of work and modes of heat transfer							
	GI				(8 Hrs)			
		ification of boiler, Boiler n	C	•				
Unit III		cations only), Construction and	_					
	engin	es, Refrigerator, Air condition	ner and air cooler,	Basic working	principle			
	of Ste	eam Turbine and Compressor			(6 Hrs)			
	Engir	neering Materials (Introduction	n, Classification, Pr	operties, Selec	tion, and			
Unit IV	applic	cation only), Basic heat treatm	nent Processes (Int	roduction to A	nnealing,			
Unitiv	Norm	nalizing and Hardening onl	y), Metal Formir	g and Metal	Joining			
	Proce	esses (Introduction and Brief d	escription of types	only)	(6 Hrs)			
	Mach	ine Tools: - Lathe Machine N	Milling Machine, D	rilling Machine	e, Shaper			
** ** **	Mach	ine, Grinding Machine (All n	nachine tools to be	studied with r	espect to			
Unit V	Work	Working principle, Block diagram, Specification and Different operations						
	perfo	rmed), Introduction to NC/CN	(C machines)		(6 Hrs)			
	Powe	r Transmission Elements: -	Belt, Pulleys, Gea	rs, Bearings, I	Keys and			
Unit VI		ling: Clutches (All power to	_	•	•			
	_	ct to brief description of their			(6 Hrs)			
Textbooks/	Sr.	TP'41	A . a	D. L.P d'.	T- 124			
Reference	No.	Title	Author	Publication	Edition			
Books	1.	Fundamentals of Classical	D. IZ. Mar	Tata Mc	8 th			
		Thermodynamics	P. K. Nag	Graw Hill	Edition			
	2.	Thermodynamics An	Y. Cengel & M	McGraw	5 th			
		Engineering Approach	Boles	Hill	Edition			
	3.		D.W.D.	Laxmi	10 th			
		Thermal Engineering	R.K. Rajput	Publications	Edition			
	4.	Engineering		Katsons	2 nd			
		Thermodynamics	D.S. Kumar		_			
		(Principle and Practices)		Publications	Edition			
	5.	Wadshan Tarlanda	Hajra	Media	4 th			
		Workshop Technology	Choudhary	Promotors	Edition			
L	1	1	l .	i	I .			

6.	Manufacturina Caianas	Amitabha Ghosh	East West	2 nd
Wandracturing Science	Manufacturing Science	& Malik	Press	Edition
7.	Manufacturing Tachnology	DND	Tata Mc	4 th
	Manufacturing Technology	P. N. Rao	Graw Hill	Edition
8. Comprehensive Workshop		C.V. Como	Laxmi	3 rd
	Technology	S.K. Garg	Publications	Edition

Faculty of Science & Technology					
Sy	Syllabus of F. Y. B.Tech. Non-Circuit Branches (Semester I)				
Course Code: E	SC103	Credits: 3-0-0			
Course: Basics	of Civil Engineering	Mid Semester Examination-I: 15 Marks			
Teaching Schen	ne:	Mid Semester Examination-II: 15 Marks			
Theory: 03 Hrs/	/week	Continuous Internal Evaluation: 10 Marks			
		Teacher Assessment: 10 Marks			
		End Semester Examination: 50 Marks			
		End Semester Examination (Duration): 2 Hrs			
Prerequisite	Introduction to basic termin	nologies involved in general science.			
	1. To get knowledge of vari	ous building materials and structural members.			
	2. To create awareness ar	nd knowledge in students about basic civil			
Objectives	engineering terminologies and techniques which will be helpful in their				
Objectives	day to day life				
	3. To understand concept of surveying and leveling.				
	Civil Engineering Mate	rials: Study of properties and use of civil			
Unit-I	engineering materials na	mely bricks, rubble, cement, sand, coarse			
	aggregate, etc.	(6 Hrs)			
Unit-II	Foundation: Introduction	to foundation and types, isolated footing,			
Omt-11	combined footing, cantilev	er footing, Pile foundation - types. (6 Hrs)			
Unit-III	Masonry: Introduction to	brick masonry and bonds in brick, header			
Cint-III	bond, stretcher bond, English and Flemish bond. (6 Hrs)				
	Lintels, Doors and Wind	dow: Types of lintels, definition of technical			
Unit-IV	terms of doors and window	ws, study of battened, ledged and braced doors			
	casement windows, glazed	window, and metal windows. (6 Hrs)			
	Roofs and Floors: Trusse	ed roofs, king post roof truss and queen post			
Unit-V	roof truss, flat RCC roof,	components of floor, material for construction			
	of floor.	(6 Hrs)			

	Surveying and Leveling:							
	i) Surveying: Length measurement, use of metallic tape and chain (20 m							
	& 30 m).							
Unit-VI	ii) A	Angular Measurements	: Use of prism	atic compass, simple	problems.			
	iii) L	evel measurements:	Use of dum	py level, simple pr	roblems on			
	C	alculation of reduced	levels.	-	(6 Hrs)			
	Sr.							
		Title	Author	Publication	Edition			
	No.							
		Building	S.K.	New Age	5 th			
	1.	Materials	Duggal	International	Edition			
		1,1,1,1,1,1,1	2 0.880	Publishers	20111011			
Textbooks/		Building	B.C.	Laxmi	11 th			
Reference Books	2.	Construction	Punmia	Publication	Edition			
DOOKS	2	Surveying And	N.N.	McGraw Hill	16 th			
	3.	Levelling	Basak	Education India	Edition			
		A Text Book of		Vhores	5 th			
	4.	Surveying &	R. Agor	Khanna				
		Levelling		Publishers	Edition			

Faculty of Science & Technology					
Syllabus of F. Y. B.Tech. All Branches (Semester I)					
Course Code	:: BSC102	Credits: 3-0-0			
Course: Open Elective-I: Engineering		Mid Semester Examination-I: 15 Marks			
Physics		Mid Semester Examination-II: 15 Marks			
Teaching Sch	heme: Theory: 03 Hrs/week	Continuous Internal Evaluation: 10 Marks			
		Teacher Assessment: 10 Marks			
		End Semester Examination: 50 Marks			
		End Semester Examination (Duration):2 Hrs			
Objectives	 To let the engineering undergraduates study physical properties, concepts and physical quantities required for the solution of complex engineering problems To make the engineering undergraduates learn basic principles of Physics and laws of scientific investigation to identify, formulate and analyse complex engineering problems To equip engineering undergraduates with competencies of scientific methods required in engineering career by upgrading skills on the basis of learning achieved from physical science perspectives. To engage engineering undergraduates extensively in scientific investigation for interdisciplinary graduate programs and a wide variety of 				
	Optics				
	The wave equation, In	ntroduction to electromagnetic waves and			
	electromagnetic spectrum,	Newton's ring, Michelson interferometer,			
Unit-I	Applications of interference				
	Diffraction of light, diff	raction grating, resolving power of grating,			
		rating in spectroscopic devices.			
		Laurent's half shade polarimeter, applications of (6 Hrs)			
	polarization.				

Acoustic terminology and definitions, Acoustic Wave Equation and its Basic

Acoustics

Unit-II

	Physical Measures, Sabine's formula (derivation not necessary) acoustics						
	factor in architectural design.						
	Ultrasonics						
	Properties, Production of ultrasonic waves by piezo-electric and						
	magnetostriction generator, engineering applications of ultrasonic waves.						
	(6 Hrs)						
	Crystal Structure						
	Crystalline and amorphous material, lattice and unit cell, Miller indices, SC,						
	BCC, FCC, diamond structure, NaCl structure, imperfections and defects in						
	solids						
Unit-III	X-Rays						
	Basics of X-Rays, Production and Detection of X-Rays, Continuous and						
	characteristics spectrum, Bragg's law of X-ray diffraction, Bragg's						
	spectrometer, Intensity of diffracted Beams, Particle Size Determination by						
	XRD, Precise Lattice Parameter Determination (6 Hrs)						
	Nuclear Physics						
	Nuclear force, liquid drop model, shell model, Nuclear fission and fusion, Q-						
	value of nuclear reaction, nuclear reactor, P-P cycle, C-N cycle, cyclotron,						
	GM counter, applications of nuclear physics in various fields.						
	Modern Physics						
Unit-IV	Black body radiation, Planck' s law, Photoelectric effect, Wave particle						
	duality, De- Broglie's concept of matter wave, Davisson-Germer experiment,						
	Scanning tunneling microscope, Time-dependent and time-independent						
	Schrodinger equation for wave function, Quantum computing.						
	(6 Hrs)						
	Introduction to solids						
	Superconductivity: Superconductivity, effect of temperature and magnetic						
	fields, Meissner effect, type I and II superconductors, BCS theory,						
Unit-V	Applications.						
	Free electron theory of metals, Fermi level, density of states, Application to						
	white dwarfs and neutron stars, Bloch's theorem for particles in a periodic						

- 135 Elec.		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Quest for Excellence								
	potent	tial, Kronig-Penney mo	odel and origin of e	energy bands				
	Magn	Magnetic Materials: Magnetic susceptibility and diamagnetic materials,						
	param	paramagnetic, ferromagnetic, and, BH characteristics, applications.						
	Nanor	Nanomaterials and Nanotechnology: Properties of nanomaterials, 0 D, 1 D, 2						
	D and	D and 3 D nanoparticle, various carbon allotropes, historical instances and day						
	to day	to day examples, Introduction to nanotechnology and applications in various						
	engine	eering fields.						
					(6 Hrs)			
	Laser							
	Einste	in's theory of matter	radiation interact	ion and A and B	coefficients,			
	Proper	rties of laser, spontan	eous and stimulate	ed emission, ruby l	aser, He-Ne			
	laser,	CO ₂ laser and semico	onductor Laser, ap	plications of lasers	s in science,			
Unit-VI	engine	eering and medicine.						
	Fiber	Technology						
	Propa	gation of light thro	ugh optical fiber,	acceptance angle	e and cone			
	numer	rical aperture, Single a	nd Multi-Mode Fib	pers, applications, se	ensors.			
	(6 Hrs)							
Textbooks/	Sr.	7D*41	A (1)	D. L.P., A.	E 124			
Reference	No.	Title	Author	Publication	Edition			
Books	1.	A.T. (1 1 6	M. N.					
		A Text book of	Avadhanulu		ath E :::			
		Engineering	P. G.	S. Chand & Co.	7 th Edition			
		Physics	Kshirsagar					
	2.	A Text book of	D. W. C.					
		Engineering	R. K. Gaur	Dhanpat Rai	3 rd Edition			
		Physics	S. L. Gupta					
	3.	D 1	David Halliday,					
		Fundamentals of	Jearl Walker,	****	oth E ***			
		Physics	and Robert	Wiley	6 th Edition			
		D 11						

Resnick

	4.	Elements of X-ray Diffraction	B. D. Cullity	Addison-Wesley Metallurgy Series	1 st Edition
	5.	Nuclear Physics	Irving Kaplan	Narosa Publishing house	2 nd Edition
	6.	Introduction to	C. Kittel	John Wiley &	8 th Edition
		Solid State Physics	C. Kittel	Sons, Inc	8 Edition
	7.	Lasers and Non-	B.B. Laud	New Age	3 rd Edition
		Linear Optics	B.B. Laud	International	5 Edition
Websites	1.	http://science.howstuffworks.com/laser1.htm			
and online	2.	http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html			
courses	3.	http://nptel.ac.in/courses/122107035/			
	4.	http://nptel.ac.in/courses/122104016/			
	5.	https://www.coursera.org/learn/intro-to-acoustics			
	6.	https://nptel.ac.in/courses/112/106/112106227/			
	7.	https://nptel.ac.in/courses/113/104/113104081/			
	8.	https://nptel.ac.in/cou	urses/115/102/1151	102017/	

Faculty of Science & Technology				
	Syllabus of F. Y. B. Teo	ch. All Branches (Semester I)		
Course Code	: BSC103	Credits: 3-0-0		
Course: Oper	Elective-I: Engineering	Mid Semester Examination-I: 15 Marks		
Chemistry		Mid Semester Examination-II: 15 Marks		
Teaching Sch	Teaching Scheme: Theory: 03 Hrs/week Continuous Internal Evaluation: 10 Marks			
		Teacher Assessment: 10 Marks		
		End Semester Examination: 50 Marks		
		End Semester Examination (Duration):2 Hrs		
	1. To relate the concepts of C	Chemistry in all Engineering Disciplines.		
	2. To make the engineering t	undergraduates acquainted with modern techniques		
	in engineering and industr	ial Chemistry.		
Objectives	3. To equip engineering und	dergraduates with the knowledge of advanced and		
	existing Engineering Materials.			
	4. To develop the awareness about powering the future using advanced energy			
	Storage Systems.			
	Advanced Engineering Materials			
	Industrial Polymers: Thermoplastics (PVC) & Thermosetting polymers			
	(Bakelite), Biodegradable poly	ymers (PVa), Properties, Applications		
Unit-I	Nanomaterials: Preparation of	of nano materials by Laser method, properties and		
	applications of CNTs.			
	Composite Materials: Ceram	Composite Materials: Ceramic matrix composites, carbon- carbon composites		
	Reinforcements: Silicon carb	ide, Fiber glass. (6 Hrs)		
	Water Technology:			
	Water Parameters: Total Dis	ssolved Solids (TDS), Dissolved Oxygen (DO),		
Unit-II	Chemical Oxygen Demand ((COD), pH, Hardness of water: types and units,		
	Estimation of hardness by	EDTA method, numerical on hardness; Boiler		
	troubles: scale, sludge, prin	ming, foaming and caustic embrittlement; Water		
	treatment: Ion exchange proce	ess, Ultra filtration, Nano filtration (6 Hrs)		
Unit-III	Fuels and Energy Storage Sy	ystems:		
	Fuels: Gross and net calorific	e value, Solid fuels: proximate analysis of coal &		

		importance, gaseous fuels: composition properties and application of natural							
	gases	gases- CNG, LNG.							
	Energ	Energy Storage Systems: Bio electrochemical batteries, lithium-ion battery,							
	alkali	ine fuel cell (AFC)			(6 Hrs)				
	Lubi	ricants and Coolants							
	Lubr	icants: Introduction, Proj	perties of liquid lubri	cants: viscosity and	viscosity				
Unit-IV	index	x, flash point and fire p	point, acid value. Nu	umerical on viscosit	ty index.				
	Cool	ants: Introduction, prope	erties and uses of w	ater and ethylene g	glycol as				
	coola	nt.			(6 Hrs)				
	Corr	osion and its prevention	1						
	Defir	nition, types, mechanisr	n of dry and wet	corrosion, Corrosion	n testing				
Unit-V	meth	ods: ultrasonic testing,	computed digital	radiography, Preve	ntion of				
	corro	sion: Methods- sacrificia	l anodic protection, E	lectroplating, Powde	r coating				
					(6 Hrs)				
	Meta	allurgical processes							
TT . *4 T/T	Calci	nation, smelting, ore dre	essing, roasting, refini	ng of metals, Meta	Calcination, smelting, ore dressing, roasting, refining of metals, Metalworking				
Unit-VI	proce	processes: casting, forging, rolling, machining, sintering, Laser cladding, 3D							
	printing (6 Hrs)								
	printi		colling, machining, s	intering, Laser clade	ding, 3D				
Textbooks/	printi Sr.	ing			ding, 3D (6 Hrs)				
Textbooks/ Reference	_		Author	ntering, Laser clade	ding, 3D				
	Sr.	ing	Author		ding, 3D (6 Hrs)				
Reference	Sr. No.	Title		Publication	ding, 3D (6 Hrs)				
Reference	Sr. No.	Title Engineering	Author	Publication Mc Graw	ding, 3D (6 Hrs) Edition				
Reference	Sr. No.	Title Engineering Chemistry	Author B. Siva Shankar	Publication Mc Graw Hills Publications	ding, 3D (6 Hrs) Edition 3rd Edition				
Reference	Sr. No.	Title Engineering Chemistry Engineering	Author B. Siva Shankar Shelly, Oberi and Malik	Publication Mc Graw Hills Publications Cingage	ding, 3D (6 Hrs) Edition 3rd Edition 1st				
Reference	Sr. No. 1.	Title Engineering Chemistry Engineering Chemistry	Author B. Siva Shankar Shelly, Oberi and	Publication Mc Graw Hills Publications Cingage Publication	ding, 3D (6 Hrs) Edition 3rd Edition 1st Edition				
Reference	Sr. No. 1.	Title Engineering Chemistry Engineering Chemistry Principles of	Author B. Siva Shankar Shelly, Oberi and Malik Odian, G.G	Publication Mc Graw Hills Publications Cingage Publication John Wiley	ding, 3D (6 Hrs) Edition 3rd Edition 1st Edition 4th				
Reference	Sr. No. 1. 2. 3.	Title Engineering Chemistry Engineering Chemistry Principles of Polymerization	Author B. Siva Shankar Shelly, Oberi and Malik	Publication Mc Graw Hills Publications Cingage Publication John Wiley & Sons, Inc	ding, 3D (6 Hrs) Edition 3rd Edition 1st Edition 4th Edition				
Reference	Sr. No. 1. 2. 3.	Title Engineering Chemistry Engineering Chemistry Principles of Polymerization Engineering	Author B. Siva Shankar Shelly, Oberi and Malik Odian, G.G	Publication Mc Graw Hills Publications Cingage Publication John Wiley & Sons, Inc Dhanpat Rai	ding, 3D (6 Hrs) Edition 3rd Edition 1st Edition 4th Edition 16 th				

	6.	A Textbook of		Dhanpat Rai &	10 th
		Engineering Chemistry	Shashi Chawla	СО	Edition
	7.	Material Science &	William Callister	Wiley	9 th
		Engineering	and V. Raghavan	Whey	Edition
	1.	Unit- I –		,	•
		https://onlinecourses.npte	l.ac.in/noc21_ch49/prev	<u>view</u>	
		https://www.explainthatst	cuff.com/composites.htm	<u>nl</u>	
	2.	Unit- II –			
		https://nptel.ac.in/content	/storage2/courses/11610	04045/lecture8.pdf	
Websites		https://nptel.ac.in/content/storage2/courses/116104045/lecture6.pdf			
and online	3.	Unit- III –			
courses		https://nptel.ac.in/content/storage2/courses/121106014/Week12/lecture38.pdf			
		https://www.sciencedirect	t.com/topics/engineerin	g/proximate-analysis	
	4.	Unit- IV –			
		https://nptel.ac.in/courses	/112/102/112102014/		
		https://nptel.ac.in/content	/storage2/courses/11210)5127/pdf/LM-12.pdf	
	5.	Unit- V - https://nptel.ac.i	in/courses/113/108/113	108051/	
	6.	Unit- VI -https://nptel.ac.	in/courses/112/107/112	107144/	

Faculty of Science & Technology Syllabus of F. Y. B. Tech. All Branches (Semester I)

Course Code	: BSC104	Credits: 3-0-0		
Course: Oper	n Elective-I: Biology for	Mid Semester Examination-I: 15 Marks		
Engineers		Mid Semester Examination-II: 15 Marks		
Teaching Sch	neme: Theory: 03 Hrs/week	Continuous Internal Evaluation: 10 Marks		
		Teacher Assessment: 10 Marks		
		End Semester Examination: 50 Marks		
		End Semester Examination (Duration):2 Hrs		
	To introduce students to me	odem biology with an emphasis on evolution of		
Objectives	biology as a multi-disciplinary field, to make them aware of applicati			
Objectives	engineering principles in bio	logy, and engineering robust solutions inspired by		
	biological examples.			
	Introduction to Molecular B	iology, Central Dogma of life, DNA replication,		
Unit-I	Translation and transcription, Introduction to Genetics, Phylogenetic analysis			
	Introduction to developmenta	l biology, structure and functions of cell. (8 Hrs)		
	Introduction to immunology,	components of the immune system, antigens and		
Unit-II	antibodies, B-cells and T- co	ells development, proliferation and differentiation,		
	MHC Restriction, Complement	nt system. (6 Hrs)		
Unit-III	Infectious diseases, TB, HIV	7, Flue, COVID-19, response of host to infectious		
	diseases. Vaccines, cancer biology. (4 Hrs)			
	Introduction to bioinformatic	es, tools of bioinformatics, primary and secondary		
Unit-IV	data bases, sequence alignm	ents, methods of structure prediction of proteins,		
	homology modeling	(6 Hrs)		
	Introduction to Analytical	l Instrumentation, Electrophoresis techniques,		
Unit-V	Chromatography types and techniques, Isoelectric focusing, PCR and ELISA			
		(6 Hrs)		
	Environmental biosafety, bio	resources, biodiversity, bioreactors, ethical aspects		
Unit-VI	of plant and animal biotechno	ology, Engineering designs inspired by examples in		
	biology, Engineering aspects	of some Nobel Prizes in Physiology and Medicine		
	& Chemistry / recent advance	es in Biology (6 Hrs)		

Textbooks/	Sr.				
Reference	No.	Title	Author	Publication	Edition
Books	1.	Essentials of Genetics.	Miko, I. &	Cambridge, MA:	2009
			Lejeune, L.,	NPG Education	
			eds.		
	2.	Essentials of Cell	O'Connor, C.	Cambridge, MA:	2010
		Biology	M. & Adams,	NPG Education	
			J. U.		
	3.	Molecular Biology of	Warson JD,	Pearson	2004
		the Gene	Baker, TA,	Education	
			Bell SP, Gann		
			A, Levin M,		
			Losick R,		
	4.	The Greatest Show on	Dawkins, R	Bantam Press,	2009
		Earth: The Evidence		Transworld	
		For Evolution		Publishers	
	5.	The Blind	Dawkins, R	W. W. Norton &	1996
		Watchmaker		Co	
	6.	The Double Helix: A	Watson, J. D.	Simon & Schuster	2011
		Personal Account of		Inc.	
		the Discovery of the			
		Structure of DNA			

Faculty of Science & Technology					
	Syllabus of F. Y. B.Tech. All Branches (Semester I)				
C C- 11					
Course Code: 1		Credits: 0-0-1			
Course: Lab-I: C-Programming		End Semester Examination/Oral: 25 Marks			
Teaching Sche	eme: Practical: 02 Hrs/week				
	Ĭ	Understand the syntax and construction of C code.			
Objectives	2. Know the steps involved in	compiling, linking and debugging C code.			
		ler files, library functions, user defined			
	functions.				
	4. To impart the use of dif	ferent data-structures like arrays, pointers,			
	structures and files.				
List of	1. If the marks obtained by a	a student in five different subjects are input			
Practical	through the keyboard, fine	d out the aggregate marks and percentage			
	marks obtained by the stude	ent. Assume that the maximum marks that can			
	be obtained by a student in a	each subject is 100.			
	2. If the ages of Ram, Shyan	n and Ajay are input through the keyboard,			
	write a program to determin	e the youngest of the three.			
	3. Any year is entered through	the keyboard. Write a program to determine			
	whether the year is leap or r	not using the logical operators.			
	4. Write a program to print th	ne multiplication table of the number entered			
	by the user. The table should	d get displayed in the following form.			
	5* 1 =5				
	5 *2 = 10				
	5. Write a menu driven program	m which has the following options:			
	i) Addition of two integrations	gers			
	ii) Subtraction				
	iii)Multiplication				
	iv)Exit				
	Make use of switch statement.				
	6. Write a function power (a, b	b), to calculate the value of a raised to b.			

- 7. Twenty-five numbers are entered from the keyboard into an array. The number to be searched is entered through the keyboard by the user. Write a program to find if the number to be searched is present in the array and if it is present, display the number of times it appears in the array.
- 8. Write a program to demonstrate the following string handling functions strlen(), strcpy(), strcmp(), strcat(), strrev().
- 9. Write a program to swap two numbers using call by reference method.
- 10. Create a structure to specify data of customers in a bank.

The data to be stored is: Account number, Name, Balance in account. Assume maximum of 200 customers in the bank. Write a function to print the Account number and name of each customer with balance below Rs. 100.

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

Faculty of Science & Technology

Syllabus of F. Y. B.Tech. Non-Circuit Branches (Semester I)

Course Code: ESC202 Credits: 0-0-1

Course: Lab-II: Basic Mechanical Engineering | End Semester Examination/Oral: 25 Marks

Teaching Scheme: Practical: 02 Hrs/week

List of

Any 10 practical to be conducted

Practical

- 1. Study and demonstration of low-pressure boiler (anyone)
- 2. Study and demonstration of high-pressure boiler (anyone)
- 3. Study and demonstration of 2 stroke and 4 stroke petrol engine
- 4. Study and demonstration of 2 stroke and 4 stroke diesel engine
- 5. Study and demonstration of domestic refrigerator
- 6. Study and demonstration of window type air conditioner
- 7. Study and demonstration of Lathe machine
- 8. Study and demonstration of Milling machine
- 9. Study and demonstration of Shaper machine
- 10. Study and demonstration of Radial Drilling machine
- 11. Assignment on Unit I, II, IV and VI (One assignment on each of these units comprising theoretical concepts and numerical. Application of Excel / MATLAB for numerical examples.) / Presentation on technical case studies
- 12. Two MCQ Tests of 15 marks each based on course contents related to GATE Examination.

Assessment will be based on:-

- 1. Attendance
- 2. Assignments
- 3. MCQ Test/Presentation on technical case studies
- 4. Viva-voce

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

Faculty of Science & Technology						
Syllabus of F. Y. B.Tech. Non-Circuit Branches (Semester I)						
Course Code:	ESC203	Credits: 0-0-1				
Course: Lab-I	I: Basics of Civil Engineering	End Semester Examination/Oral: 25 Marks				
Teaching Sche	eme: Practical: 02 Hrs/week					
	1. To learn basics of civil en	gineering will help the engineers to deal with				
Objectives	the facts and applications to the	ne real-life problems.				
	1. To observe civil enginee	ring materials in lab such as bricks, rubble,				
	cement, sand, coarse aggre	egate, etc.				
	2. To study and write abou	nt foundation and its types, isolated footing,				
	combined footing, cantilever footing and pile foundation.					
	3. To observe and study brick masonry and bonds in brick such as header					
List of	bond, stretcher bond, English and Flemish bond.					
Practical	4. To observe structural components such as lintels, definition of technical					
	terms of doors and windows, study of battened, ledged and braced doors					
	casement windows, glazed window, and metal windows.					
	5. To observe and study trussed roof, king post roof truss and queen post					
	roof truss, flat RCC roof, components of floor, material for construction					
	of floor.					
	6. To observe and study various surveying instruments.					

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

Faculty of Science & Technology
Syllabus of F. Y. B.Tech. All Branches (Semester I)

Course Code: BSC201 Credits: 0-0-1

Course: Lab-III Open Elective-I: Engineering Physics | Teacher Assessment: 25 Marks

Teaching Scheme: Practical: 02 Hrs/week

Any 10 practical to be conducted

- 1. Newton's ring: To determine wavelength of monochromatic light
- 2. G. M. Counter: dead time calculation
- 3. Grating: To determine wavelength of LASER light.
- 4. Polarimeter: To determine concentration of solution.
- 5. Reverberation time: To determine Reverberation time of a hall.
- 6. Characteristics of solar cell

List of

Practical

- 7. Ultrasonic interferometer
- 8. Zener diode: To study characteristics of zener diode & to determine zener voltage.
- 9. Dielectric constant: to determine dielectric constant.
- 10. Forbidden gap: To determine forbidden gap of semiconductors.
- 11. Transistor Characteristics in CE Configuration.
- 12. To determine the Hall coefficient of a semiconductor material and then evaluate carrier type and its density of charge carrier.
- 13. Planck's Constant
- 14. To measure the divergence of the laser beam

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

Faculty of Science & Technology Syllabus of F. Y. B.Tech. All Branches (Semester I)

Course Code: BSC202 Credits: 0-0-1

Course: Lab-III Open Elective-I: Engineering Chemistry | Teacher Assessment: 25 Marks

Teaching Scheme: Practical: 02 Hrs/week

Any 10 practical to be conducted

- 1. Lab safety experiment
- 2. Preparation and standardization of analytical reagents
- 3. Analysis of Chemical parameters of water
- 4. Analysis of physical parameters of water
- 5. Determination of percentage of moisture and ash in given coal sample.
- 6. Determination of Acid value/ saponification value of lubricating oil.

List of

Practical

- 7. Determination of viscosity of chemical compound
- 8. Preparation of polymer
- 9. Electro gravimetric Estimation of Metals (Virtual experiment)
- 10. Determination of chloride content of water by Mohr's method (Virtual experiment)
- 11. Determination of melting or boiling point of organic compound. (Virtual experiment)
- 12. Determination of rate of corrosion in different pH media. (Virtual experiment)
- 13. Preparation of nano materials
- 14. Determination of molecular weight of polymer using Ostwald's viscometer

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

Faculty of Science & Technology Syllabus of F. Y. B.Tech. All Branches (Semester I) Course Code: BSC203 Credits: 0-0-1 Course: Lab-III Open Elective-I: Biology for Engineers Teacher Assessment: 25 Marks Teaching Scheme: Practical: 02 Hrs/week 1. Biosafety laboratory practices and biological waste disposal 2. Buffers in biology, buffering capacity and pKa 3. Observing cell surface and intracellular contents using light and/or fluorescence microscopy 4. Measuring mechanical strength of cells - osmolarity and elasticity of biological membranes 5. Protein and DNA isolation from plant cells, visualization of proteins and List of **DNA Practical** 6. Microbial culture - growth curve and enumeration methods 7. Basic molecular biology techniques - including isolation of bacterial plasmids demos on Polymerase Chain Reaction and Restriction Fragment

The assessment of term work shall be done on the basis of the following.

Length Polymorphism

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

8. Mammalian and plant cell culture methods

Faculty of Science & Technology						
Syllabus of F. Y. B.Tech. All Branches (Semester I)						
Course Code:	ESC204	Credits: 0-0-1				
Course: Lab IV: Workshop		Teacher Assessment: 25 Marks				
Teaching Sch	eme: Practical: 02 Hrs/week					
	1. To have hands on practice	e and understanding of various manufacturing				
	processes like Fitting, Tur	ning, machining, Carpentry, Sheet metal work				
Course	and welding.					
Objectives	2. To have understanding and	d practice of various measurement devices and				
	Techniques.					
	3. To have hands understand	ling and practice of various cutting tools and				
	machines used in manufact	uring work.				
	1. Wood sizing exercises in	planning, marking, sawing, chiseling, and				
	grooving to makehalf lap jo	oint and cross lap joint.				
	2 A job involving cutting, f	iling to saw cut, filing all sides and faces,				
	corner rounding, drilling, and tapping on M. S. plates.					
	3. A job on use of plumbing tools and preparation of plumbing line					
	involving fixing of water tap and use of elbow, tee, union and coupling,					
	etc.					
	4. Making a small parts using GI sheet involving development, marking,					
	cutting, bending, brazing, an	d soldering operations- i) Tray ii) Funnel and				
	similar articles.					
List of	5. Exercise in Arc welding (M	MAW) to make a square butt joint.				
Practical	6. A job on turning of a Mild S	teel cylindrical job using center lathe.				
(Any	7. A job on turning of Mild steel on CNC turning machine.					
Four)	Contents:	Terms related to wood working, Types of				
		als, Types of joints - Mortise and Tenon,				
		c., Methods of preparation and applications,				
	Wood working lathe, sa					
		• •				
	b) Welding: Arc welding - welding joints, edge preparation, welding					

- tools and equipment, Gas welding types of flames, tools and equipment, Resistance welding Spot welding, joint preparation, tools and equipment, safety precautions.
- c) **Fitting and Plumbing:** Fitting operation like chipping, filing, right angle, marking, drilling, tapping etc., Fitting hand tools like vices, cold chisel, etc. Drilling machine and its operation, Different types of pipes, joints, taps, fixtures and accessories used in plumbing, safety precautions.
- d) Sheet Metal Work: Simple development and cutting, bending, Beading, Flanging, Lancing and shearing of sheet metal, Sheet metal machines - Bending Machine, Guillotine shear, Sheet metal joints, Fluxes and their use.
- e) **Machine shop**: Lathe machine, types of lathes, major parts, cutting tool, turning operations, safety precautions
- f) **CNC machines**. Turning center and Vertical milling machines. Operating principals, major parts and various operations.

The assessment of term work shall be done on the basis of the following.

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above

Instruction to Students:

Each student is required to maintain a "workshop diary" consisting of drawing / sketches of the job sand a brief description of tools, equipment, and procedure used for doing the job.

Reference/Textbooks:

- K. C. John, Mechanical Workshop Practice, Prentice Hall Publication, New Delhi, 2010.
- 2. Hazra and Chaudhary, Workshop Technology-I, Media promoters & Publisher private limited.

Faculty of Science & Technology							
Syllabus of F. Y. B.Tech. All Branches (Semester I)							
Course Code:	BSC205	Credits: 0-0-1					
Course: Lab-V	: Engineering Graphics	End Semester Examination/Oral: 25 Marks					
Teaching Sche	eme: Practical: 02 Hrs/week						
	Following are the objectives of	f the course					
	1. To develop vision and image	To develop vision and imagination skill required for drawing engineering					
	components.						
	2. Enable the students	with various concepts like dimensioning,					
	conventions and standard	ds related to working drawings in order to					
Course	become professionally effi	icient.					
Objectives	3. Develop the ability to cor	nmunicate with others through the language					
	of technical drawing and	sketching.					
	4. Ability to read and interpre	et engineering drawings created by others.					
List of	1. Introduction: -						
Practical	Drawing Instruments and	their uses. (Practice of drawing instruments)					
	2. Drawing standards and	geometrical construction:					
	Types of lines, lettering, of	dimensioning, scaling conventions. Geometrical					
	construction. Dividing a	given straight line into any number of equal					
	parts, bisecting a given ar	parts, bisecting a given angle, drawing a regular polygon given one side.					
	(Use A2 sheet and sketch)	book)					
	3. Projections of Planes						
	Projections of planes p	parallel and perpendicular to one or both					
	planes, projection of pla	nes inclined to one or both planes. (Minimum 4					
	problems on A2 sheet)						
	4 Projections of Solids						
	Types of solids, projection	ons of solids like cube, Prism, Pyramid, Cone					
	and Cylinder with its ax	is perpendicular to one reference plane and					
	parallel to the other,						
	Solids with axis inclined t	o one of the reference planes and parallel to the					
	other. (Minimum 4 proble	ms on A2 sheet)					

5. Orthographic Projections

Introduction to orthographic projection, drawing of 2-D orthographic views of objects from **tir**isometric views. (Minimum 4 problems on A2 sheet)

6. Isometric Projections

Isometric projections: Isometric scale, drawing of isometric views and projections from given orthographic views. (Minimum 4 problems on A2 sheet)

Textbooks/	Sr. No.	Title	Author	Publication	Edition
Reference	1.	Engineering Drawing	N. D. Bhatt	Charotar	46 th Edition
Books				Publishing House	
	2.	A textbook of	K. V. Natarajan	Dhanalakshmi	31 st Edition
		Engineering Graphic		Publishers	
	3.	Engineering Graphics	K. Venugopal	New Age	1 st Edition
			and V. Prabhu	International (P)	
			Raja	Ltd	
	4.	Engineering Drawing	Dhananjay A.	McGraw Hill	1 st Edition
		with an Introduction	Jolhe	Education	
		to AUTOCAD			

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

Faculty of Science & Technology							
Syllabus of F. Y. B.Tech. All Branches (Semester I)							
Course Code: HSM201				Credits: 0-0-1			
Course: Lab-	Course: Lab-VI: Communication Skills				Teacher Assessment: 25 Marks		
Teaching Sch	Teaching Scheme: Practical: 02 Hrs/week						
Course	1. T	o apply I	English Gramma	r in da	y to day commu	inication.	
Objectives	2. T	o pronou	p pronounce and articulate English words and sentences accurately				
	3. T	o commu	inicate in English	h effec	ctively by using	updated vocabul	ary.
	4. T	o apply S	Soft Skills from c	campu	s to corporate.		
	5. To	exhibit	etiquettes throug	gh thei	r behavior from	campus to corpo	rate.
Sr. No.	Sec	tion			Contents		
Unit-I			Parts of Speech				
Unit-II	Grai	nmar	Tenses and the Concept of Time				
Unit-III			Transformation of sentences and Conditional Clauses				
	Vocabulary Enhancement		Types of Vocabulary				
Unit-IV			Basic techniques to Enhance Vocabulary				
			Vocabulary Enhancing Activities				
		Phonetics and problems in learning and using pronunciation,					
	Introduction • Vowel sou			nds & Consonant Sounds,			
Unit-V	to Pho	to Phonetics • Articulation			n of Sounds		
		Word accent			t		
			Importance	of So	ft Skills in gener	al,	
Unit-VI	Soft	Soft Skills • Campus to Corpor			orate Etiquettes: (Grooming, Mobile,		
		Classroom)			1	`	ŕ
Textbooks/	Sr.						
Reference	No.	Title			Author	Publication	Edition
Books		The Essence of		Adri	an Budday,	Prentice Hall	1992
	1.	Effective			Ludlow and	of India-	
		Communication		Ferg	us' Panton	Private Ltd.	
	2.	Profess	ional	A. K	. Jain, Pravin,	S. Chand &	2018

		Communication Skills	S. R. Bhatia, A. M.	Company		
		Communication Skins	·			
			Sheikh	Ltd.		
		Business	Urmila Rai, S. M.	Himalya	9 th	
	3.	Communication	Rai	Publishing	Edition	
				House		
		Technical	Meenakshi Raman	Oxford	2 nd	
	4.	Communication-	& Sangeeta	University	Edition	
	4.	Principles and	Sharma	Press		
		Practice				
	5.	A course in Phonetics	J. Sethi,	PHI	2 nd	
	3.	& Spoken English	P.V. Dharmatma	Publication	Edition	
	6.	Communication Skills	Sunita Mishra, C.	Pearson	2 nd	
	0.	for Engineers	Murli Krishna	Education	Edition	
	7.	Grammar of Spoken	Dauglas Biber,	Longman	1 st	
	7.	and Written English	Geoffrey Leech		Edition	
	0	English Grammar and	Wren and Martin,	S. Chand	1 st	
	8.	Composition		Publications	Edition	
Mode of	Use of audio video sessions, demonstrations, group activities and games,					
Conduct	simulation activities					

Classroom Activities:

- 1. Self- Introduction Use of Audio, video sessions, demonstrations, group activities and games, scene enactments.
- 2. Review a film clipping
- 3. Guess the word, Telephonic Conversations
- 4. Dumb Charades
- 5. Dialogues, Situational conversation, Relay conversation.
- 6. Analyse a newspaper article
- 7. Spot the error, clues.
- 8. Newspaper articles, Reports, Editorials.
- 9. Picture Composition
- 10. Paragraph Writing

- 11. Group Activity-follow instructions, enacting.
- 12. Crossword Puzzles, Scramble
- 13. Memory Games.
- 14. Chinese Whispers, Follow Instructions

- Continuous assessment
- Performing the experiments in the laboratory
- Online Examination conducted on the syllabus and term work mentioned above.

Faculty of Science & Technology Syllabus of F. Y. B.Tech. All Branches (Semester I)

	Syllabus of F. Y. B.Tech. All Branches (Semester I)	
Course Code	e: ESC206	
Course: Non	-Credits Mandatory course (Environmental Studies)	
Teaching Sc	heme: 02 Hrs./week	
Objectives	1. To raise the awareness, about the emerging environmental issues.	
	2. To study the implementation of environmental policies and practices.	
	3. To study environment as a whole with all the basic concepts related t	o it.
Unit-I	Multidisciplinary nature of Environment:	
	Components of Environment, Structure of Atmosphere, Environmental	
	Degradation, Sustainable development, Environmental ethics	(4 Hrs)
Unit-II	Natural Resources:	
	Conventional (Exhaustive) Resources - Forest, Water resources, Altern	ative
	(Inexhaustive) Resources i.e., Solar energy, Wind energy, Tidal energy	etc.
	Role of individual in conservation of natural resources.	(4 Hrs)
Unit-III	Environment & Human health:	
	Water quality & health, Air quality & health, Industry and health, Energ	gy &
	Health. Government organizations in the field of Environment, Institution	ons
	working in Environment and conservation, Environmentalists in Enviro	nment,
	and conservation.	(4 Hrs)
Unit-IV	Biodiversity and its conservation:	
	A. Conservation of wildlife, Forest conservation, Soil, Water and Energ	y
	Conservation.	
	B. Solid waste management, Plastic waste management, E- waste mana	gement.
		(4 Hrs)
Unit-V	Environmental Audit and legislations:	
	A. EIA in India, MoEF, ISO environmental standards, Environmental	
	Management System (EMS),	
	B. Power/ Functions of State Pollution Control Board and Central Pollu	tion
	Control Board.	(4 Hrs)

Unit-VI	Social	Issues and Environmental laws	:					
	Enviro	Environmental Protection Act (1986), Air Act(1981), Water Act(1974), Forest						
	Act(19	980), Wildlife Protection Act.			(4 Hrs)			
Textbooks/	Sr.	Title	Author	Publication	Edition			
Reference	No.							
Books	1.	Handbook of Environmental	Dr. R. K.	Enviro	3 rd			
		Laws, Rules guidelines,	Trivedy	Media	Edition			
		compliances and standards						
		Volume I and II						
	2.	Textbook of environmental	Erach	University	1 st			
			Bharucha	Press	Edition			
	3.	Environmental chemistry and	Dr. S. S Dara	S. Chand	7 th			
		pollution control	& Dr. D. D.		Edition			
			Mishra					
	4.	Environmental Biotechnology	S. N. Jogdand	Himalaya	1 st			
				Publishing	Edition			

Faculty of Science & Technology Syllabus of F. Y. B.Tech. All Branches (Semester II)

Course Code:	BSC151	Credits: 3-1-0		
Course: Statis	tics and Integral Calculus	Mid Semester Examination-I: 15 Marks		
Teaching Sch	eme:	Mid Semester Examination-II: 15 Marks		
Theory: 03 H	rs/week	Teacher Assessment: 10 Marks		
Tutorial: 01 H	Ir/week	Continuous Internal Evaluation: 10 Marks		
		End Semester Examination: 50 Marks		
		End Semester Examination (Duration): 2 Hrs	3	
	Students requires sufficient	amount of knowledge of certain topics related	to	
Prerequisite	Statistics and Integral Calcu	lus.		
Objectives	1. To provide basic ideas o	f statistics including measures of central tende	ncy	
	and dispersion.			
	2. To develop mathematica	al skills and logical understanding of the subject	et.	
	3. To analyze and find solu	tions of problems in engineering.		
	4. To apply knowledge of i	mathematics in engineering and technology.		
Unit-I	Statistics-I			
	Introduction to Statistics, M	Measures of central tendency: Mean, Median	and	
	Mode.	(5	Hrs)	
Unit-II	Statistics-II			
	Measures of dispersion: Qu	artiles, Quartile deviation, Coefficient of Qua	artile	
	deviation, Mean deviation,	Coefficient of Mean deviation, Standard devia	ition,	
	Variance, Coefficient of variance	ariation, Skewness, Measures of Skewness:	Karl	
	Pearson's coefficient of skey	wness, Bowley's coefficient of skewness. (7	Hrs)	
Unit-III	Curve Tracing and Rectifi	cation		
	Tracing of curves in Car	tesian form, Tracing of curves in Polar f	form,	
	Rectification of plane curves	s (Cartesian and Polar) (6	Hrs)	
Unit-IV	Integral Calculus			
	Reduction Formulae, Beta F	Function, Gamma Function, Relation between	Beta	
	and Gamma Function (with	out proofs) (6	Hrs)	
Unit-V	Multiple Integrals			
	Double Integration in Carte	esian and Polar co-ordinates, Change of order	er of	

Unit-VI	Appli	cations of Multiple	Integrals		
	Applic	cation to areas, volur	nes, surfaces areas	and volume of revol	utions
					(6 Hrs)
Textbooks/	Sr.	Title	Author	Publication	Edition
Reference	No.				
Books	1.	A Text Book of	P. N. Wartikar	Pune Vidyarthi	9 th
		Applied	J. N. Wartikar	Griha Prakashan,	Edition
		Mathematics		Pune	
		Volume-I			
	2.	Advanced	H. K. Dass.	S. Chand and Co.	18 th Edition
		Engineering		Ltd	
		Mathematics			
	3.	Higher	Dr. B. S.	Khanna	46 th Edition
		Engineering	Grewal	Publishers	
		Mathematics			
	4.	Higher	B.V. Ramana	Tata McGraw-	1 st Edition
		Engineering		Hill Publishing	
		Mathematics		Co. Ltd.	
	5.	Advanced	Erwin	Wiley eastern	10 th Edition
		Engineering	Kreyszig	Ltd. Mumbai	
		Mathematics			
	6.	A Text Book of	Peter O'Neil	Thomson Asia	7 th Edition
		Engineering		Pvt. Ltd.,	
		Mathematics		Singapore	
	7.	Advanced	C. R. Wylie &	Mc Graw Hill	6 th Edition
		Engineering	Barrett	Publishing	
		Mathematics		Company Ltd	
	8.	Advanced	M. D.	Pearson	2 nd Edition
		Engineering	Greenberg	Education	
		Mathematics			

Faculty of Science & Technology					
Syllabus of F. Y. B.Tech. All Branches (Semester II)					
Course Code: ESC151 Credits: 3-0-0					
Course: Python	Programming	Mid Semester Examination-I: 15 Marks			
Teaching Schem	e: Theory: 03 Hrs / week	Mid Semester Examination-II: 15 Marks			
		Teacher Assessment: 10 Marks			
		Continuous Internal Evaluation: 10 Marks			
		End Semester Examination: 50 Marks			
		End Semester Examination (Duration): 2 Hrs			
Prerequisite	Basic Mathematics				
	1. To introduce basic con	nstructs of python programming language.			
Objectives	2. To make Engineerin	g graduates learn python data types and their			
	operations.				
	Introduction to Python 1	Programming			
	Python Language- history, features, advantages, Applications of Python,				
Unit-I	Comparison with other programming languages				
	Installing python, installing Pycharm IDE. Getting python help online.				
	Structure of Python Program, data types, simple arithmetic operations,				
	Comments, Type Convers	sions, Flowchart, Algorithm (6 Hrs)			
	Flow Control and Loops	3			
Unit-II	Decision Making: if stat	ement, ifelse statement, ifelifelse statement,			
	Nested if statement, The C	Get construct (6 Hrs)			
	Loops				
Unit-III	While loop, for loop, no	ested loops, range() function, continue and break			
	statement	(6 Hrs)			
	Functions				
Unit-IV		amonly Used Modules, Function Definition and			
	Calling the Function, The	return Statement (6 Hrs)			
	Lists & Sets				
Unit-V		remove item, access, modify, slice, loop through			
	list; predefined list metho	ds with example, application			

	Pythor	Set- syntax: add-re	emove, item access, modify	v. predefined li	st
	methods, Compare list and set (6 Hrs)				
	Tuples	s & Dictionary			
	Pythor	n Tuple- syntax: a	dd-remove, access, chang	ge value, loop	through
Unit-VI	tuple, j	predefined tuple me	ethods		
Omt-VI	Pythor	n Dictionary- syntax	x: add-remove, access, cha	nge value, loop	through
	values	, levels of dictionar	ry, predefined dictionary n	nethods, applic	ations of
	diction	nary			(6 Hrs)
	Sr.	Title	Author	Publication	Edition
	No.	Title	Author	1 ubilcation	Edition
	1.	Think Python	Allen B. Downey	O'Really	2 nd
					Edition
Textbooks/	2.	Dive into	Mark Pilgrim	Apress	2 nd
Reference		Python 3			Edition
Books	3.	Learning with	Allen B. Downey	Dreamtech	1 st
Dooks		Python			Edition
	4.	The Complete	Martin C. Brown	Mc Graw	4 th
		Reference		Hill	Edition
		Python			
	5.	Head First	Paul Barry	O'Really	2 nd
		Python			Edition

Faculty of Science & Technology				
Syllabus of F. Y. B.Tech. Non-Circuit Branches (Semester II)				
Course Code: ESC152 Credits: 3-0-0				
Course: Engine	eering Mechanics	Mid Semester Examination-I: 15 Marks		
Teaching Sche	me:	Mid Semester Examination-II: 15 Marks		
Theory: 03 Hrs	s/week	Teacher Assessment: 10 Marks		
		Continuous Internal Evaluation: 10 Marks		
		End Semester Examination: 50 Marks		
		End Semester Examination (Duration): 2 H	rs	
Prerequisite	Introduction to basic	terminologies involved in physics.		
	1. To study the force	es and their effects on the bodies in motion or	at rest.	
	2. To study the mech	nanics of rigid bodies and deformed bodies.		
Objectives	3. To study the prope	erties of plane surfaces, analysis of simple tru	isses and	
	concept of friction	1.		
	Force System:	Introduction, Fundamental concept, pri	inciple of	
	superposition, fundamental laws of mechanics, coplanar force system,			
Unit-I	components, resultant, moment of a force, Varignon's Theorem, couple,			
Cint-1	Equivalent force cou	iple system.		
	Equilibrium of forces: Introduction, free body diagram, beam, Equilibrium			
	of force system, Lami's Theorem. (10 Hrs)			
	Friction: Introduc	ction, advantages and limitations of	friction,	
	characteristics of fric	ctional force, Theory of friction, Types of frie	ction, Laws	
Unit-II	of friction, Important definitions.			
	Plane Trusses: Introduction, classification of trusses, assumption made in			
	the analysis of truss	s, Analysis of statically determinate truss by	method of	
	joint and method of	section.	(8 Hrs)	
	Properties of Plane	e Surfaces: Introduction, Centroid, Centre	of gravity,	
Unit-III	Important definition	ns, Determination of centroid, Positions of	of centroid,	
	Moment of Inertia,	Polar moment of inertia, Radius of gyration	, Theorems	
	of moment of inertia	ı.	(6 Hrs)	

	Kinem	natics of Particles: 1	Introduction, b	pasic terms and	definitions,		
	Rectili	near motion of the	particles, Mo	tion curves und	er uniform		
Unit-IV	acceleration, linear motion under gravity, linear motion under variable						
	accelei	ration, motion curves	under variab	ole acceleration,	Motion of		
	project	iles, Relative motion.			(6 Hrs)		
	Kineti	cs of Particles: Introdu	ction, importar	nt terms and defini	tions, linear		
Unit-V	motion	of a particle by Newto	on's second law	of motion and D	'Alembert's		
	princip	ole.			(3 Hrs)		
	Impul	se, Momentum and	Impact: In	troduction of In	npulse and		
T T.T	Mome	ntum, important termino	ologies, princip	le of impulse and	momentum,		
Unit-VI	law of	conservation of linear	momentum, Ro	ecoil of gun, Impa	ict, types of		
	central	impact, loss of kinetic e	energy during in	mpact.	(3 Hrs)		
Textbooks/	Sr.	(D) (A)	A 43	D 11: 4:	E 1141		
Reference	No.	Title	Author	Publication	Edition		
Books		Б.,	0.0	New Age			
	1.	Engineering	S.S.	International	8 th Edition		
		Mechanics	Bhavikatti	Publication			
	2	Engineering	R. K.	Laxmi	4th T 1:4:		
	2.	Mechanics	Bansal	Publication	4 th Edition		
	2	Engineering	A D D	Dhamat Dai	and Edition		
	3.	Mechanics	A. R. Basu	Dhanpat Rai	2 nd Edition		
	4	Engineering	Nelson and	Mc Graw	and Edition		
	4.	Mechanics	Mclean	HillBook, Inc	2 nd Edition		
	_	Engineering	D. D 1	Khanna	oth E 1.		
	5.	Mechanics	B. Prasad	Publications	9 th Edition		
		Engineering					
		Mechanics:	R.C.	Pearson	14 th		
	6.	Principles of Statics	Hibbler	Education	Edition		
		and Dynamics					
		A Textbook Of	D C		22 nd		
	7.	Engineering	R.S. Khurmi	S. Chand			
		Mechanics	KIIUIIIII		Edition		

Faculty of Science & Technology				
Syllabus of F. Y. B.Tech. Non-Circuit Branches (Semester II)				
Course Code	e-: ESC153	Credits: 3-0-0		
Course Title	: Electrical and Electronics	Mid Semester Examination-I: 15 Marks		
Engineering		Mid Semester Examination-II: 15 Marks		
Teaching Sci	heme:	Teacher Assessment: 10 Marks		
Theory: 03 H	Hrs/week	Continuous Internal Evaluation: 10 Marks		
		End Semester Examination: 50 Marks		
		End Semester Examination (Duration): 2 Hrs		
Objectives	1. To introduce fundamenta	al concepts, various laws-principles, and Basic		
	knowledge of Electrical qu	nantities		
	2. To impart knowledge rela	ted to electromagnetism for understanding basics		
	of electrical machines.			
	3. To provide knowledge of s	some electronic devices and rectifier circuits.		
	4. To expose the students to	working of digital circuits, transducers and their		
	application			
Unit-I	AC and DC Fundamentals			
	Current, emf, Electric Potenti	al, potential difference, Resistance, Work, power,		
	Energy. Laws of resistance,	resistivity, Concept of AC and DC, Ohms law		
	Series and parallel combinati	on of resistance, Kirchhoff's laws, Definition of		
	Cycle, Time period, Freque	ency, Amplitude, Phase and Phase difference,		
	Average value, R.M.S. value	, and Power Factor. Advantages of three phases		
	over single-phase	(6 Hrs)		
Unit-II	Magnetism & Electromagne	tic Induction		
	Flux, flux density, magnetic	c field strength, mmf, reluctance, permeability.		
	Comparison between electric	ic and magnetic circuits. Faraday's laws of		
	electromagnetic induction,	Lenz's law, Flemings's right-hand rule for		
	Generators, Fleming's left-har	nd rule for motors. (6 Hrs)		
Unit-III	Electrical Machines			
	Construction, working and cla	ssification of the transformer, Significance of Emf		
	equation (no derivation)	Voltage ratio, three-phase induction motor		

	Constru	ction, types of Alterna	tor: - construction	on and working p	rinciple and	
	applicati	application. Single-phase Induction motors: Construction, applications of a)				
	Split phase induction motor b) Capacitor start capacitor run induction motor,					
	Universa	al motor			(6 Hrs)	
Unit-IV	Semicor	nductor devices and its	applications			
	Semicor	nductor and its types, PN	N Junction Diode,	Zener Diode, LED	BJT, JFET,	
	Rectifie	rs				
	Types I	Half wave, Full wave,	Bridge rectifiers,	Ripple factor, Eff	iciency and	
	PIV, Co	emparison, Uses of filte	rs in rectifier circ	cuit, Basic blocks o	of Regulated	
	Power S	upply			(6 Hrs)	
Unit-V	Digital	Circuit				
	Basic lo	gic gates, universal log	gic gates, Boolean	n algebra, Introduct	tion to logic	
	Families	s, Half Adder, Full Adde	er, Multiplexer, D	e-multiplexer, SR-l	Flip-Flop.	
					(6 Hrs)	
		Transducers Definition, Classification of Transducers, Operation of Transducers-				
Unit-VI			Transducers,	Operation of T	Transducers-	
Unit-VI	Definition			•		
Unit-VI	Definition Tempera	on, Classification of	RTD, Thermoo	couple, Thermiston		
Unit-VI Textbooks/	Definition Tempera	on, Classification of ature Measurement	RTD, Thermoo	couple, Thermiston	r, Pressure	
	Definition Tempera Measure	on, Classification of ature Measurement - ement-Strain Gauge, Dis	RTD, Thermoc	couple, Thermiston	r, Pressure (6 Hrs) Edition	
Textbooks/	Definition Tempera Measure Sr. No.	on, Classification of ature Measurement - ement-Strain Gauge, Dis Title	RTD, Thermoc splacement measu Author	couple, Thermiston rement- LVDT Publication	r, Pressure (6 Hrs)	
Textbooks/ Reference	Definition Tempera Measure Sr. No.	on, Classification of ature Measurement - ement-Strain Gauge, Dis Title ABC of Electrical	Author B. L. Thereja	rement- LVDT Publication S. Chand	r, Pressure (6 Hrs) Edition	
Textbooks/ Reference	Definition Tempera Measure Sr. No.	on, Classification of ature Measurement - ement-Strain Gauge, Dis Title ABC of Electrical Engineering	Author B. L. Thereja A. K. Thereja	rement- LVDT Publication S. Chand Publishing	r, Pressure (6 Hrs) Edition 1st Edition	
Textbooks/ Reference	Definition Tempera Measure Sr. No.	on, Classification of ature Measurement - ement-Strain Gauge, Dis Title ABC of Electrical Engineering Basic Electrical	Author B. L. Thereja A. K. Thereja	rement- LVDT Publication S. Chand Publishing S.K. Kataria &	r, Pressure (6 Hrs) Edition 1st Edition 14th	
Textbooks/ Reference	Definition Tempera Measure Sr. No. 1.	on, Classification of ature Measurement - ement-Strain Gauge, Dis Title ABC of Electrical Engineering Basic Electrical Engineering	Author B. L. Thereja A. K. Thereja J.B. Gupta	rement- LVDT Publication S. Chand Publishing S.K. Kataria & Sons	r, Pressure (6 Hrs) Edition 1st Edition 14th Edition	
Textbooks/ Reference	Definition Tempera Measure Sr. No. 1.	on, Classification of ature Measurement - ement-Strain Gauge, Dis Title ABC of Electrical Engineering Basic Electrical Engineering Basic Electrical	Author B. L. Thereja A. K. Thereja J.B. Gupta	Publication S. Chand Publishing S.K. Kataria & Sons S. Chand	r, Pressure (6 Hrs) Edition 1st Edition 14th Edition 2nd	
Textbooks/ Reference	Definition Tempera Measure Sr. No. 1. 2.	on, Classification of ature Measurement - ement-Strain Gauge, Dis Title ABC of Electrical Engineering Basic Electrical Engineering Basic Electrical Engineering	Author B. L. Thereja A. K. Thereja J.B. Gupta V. K. Mehta	Publication S. Chand Publishing S.K. Kataria & Sons S. Chand Publishing	r, Pressure (6 Hrs) Edition 1st Edition 14th Edition 2nd Edition	
Textbooks/ Reference	Definition Tempera Measure Sr. No. 1. 2.	on, Classification of ature Measurement - ement-Strain Gauge, Dis Title ABC of Electrical Engineering Basic Electrical Engineering Basic Electrical Engineering Principles of	Author B. L. Thereja A. K. Thereja J.B. Gupta V. K. Mehta	Publication S. Chand Publishing S.K. Kataria & Sons S. Chand Publishing S. Chand Publishing	r, Pressure (6 Hrs) Edition 1st Edition 14th Edition 2nd Edition 12th Edition	
Textbooks/ Reference	Definition Tempera Measure Sr. No. 1. 2. 3.	on, Classification of ature Measurement - ement-Strain Gauge, Districte Title ABC of Electrical Engineering Basic Electrical Engineering Basic Electrical Engineering Principles of Electronics	Author B. L. Thereja A. K. Thereja J.B. Gupta V. K. Mehta	Publication S. Chand Publishing S.K. Kataria & Sons S. Chand Publishing S. Chand Publishing Publishing	r, Pressure (6 Hrs) Edition 1st Edition 14th Edition 2nd Edition 12th	
Textbooks/ Reference	Definition Tempera Measure Sr. No. 1. 2. 3.	on, Classification of ature Measurement - ement-Strain Gauge, Districte Title ABC of Electrical Engineering Basic Electrical Engineering Basic Electrical Engineering Principles of Electronics Modern Digital	Author B. L. Thereja A. K. Thereja J.B. Gupta V. K. Mehta	Publication S. Chand Publishing S.K. Kataria & Sons S. Chand Publishing S. Chand Publishing Tata Mc-Graw	r, Pressure (6 Hrs) Edition 1st Edition 14th Edition 2nd Edition 12th Edition	

Faculty of Science & Technology Syllabus of F. Y. B.Tech. All Branches (Semester II)

Syllabus of F. Y. B.Tech. All Branches (Semester II)				
Course Code	e: BSC102	Credits: 3-0-0		
Course: Ope	n Elective-II: Engineering	Mid Semester Examination-I: 15 Marks		
Physics		Mid Semester Examination-II: 15 Marks		
Teaching Sch	heme:	Continuous Internal Evaluation: 10 Marks		
Theory: 03 H	łrs/week	Teacher Assessment: 10 Marks		
		End Semester Examination: 50 Marks		
		End Semester Examination (Duration):2 Hrs		
	1. To let the engineering u	ndergraduates study physical properties, concepts		
	and physical quantities	required for the solution of complex engineering		
	problems			
	2. To make the engineering undergraduates learn basic principles of Physics			
	and laws of scientific investigation to identify, formulate and analyse			
Ohiootiyog	complex engineering problems			
Objectives	3. To equip engineering undergraduates with competencies of scientific			
	methods required in engineering career by upgrading skills on the basis of			
	learning achieved from physical science perspectives.			
	4. To engage engineering undergraduates extensively in scientific			
	investigation for interdis	ciplinary graduate programs and a wide variety of		
	other lifelong learning of	pportunities.		
	Optics			
	The wave equation, In	ntroduction to electromagnetic waves and		
	electromagnetic spectrum,	Newton's ring, Michelson interferometer,		
Unit-I	Applications of interference			
Omt-1	Diffraction of light, diff	raction grating, resolving power of grating,		
	Application of diffraction gr	ating in spectroscopic devices.		
	Polarization, Nicol prism, I	Laurent's half shade polarimeter, applications of		
	polarization.	(6 Hrs)		

	Acoustics
	Acoustic terminology and definitions, Acoustic Wave Equation and its Basic
	Physical Measures, Sabine's formula (derivation not necessary) acoustics
Unit-II	factor in architectural design.
Cint-11	Ultrasonics
	Properties, Production of ultrasonic waves by piezo-electric and
	magnetostriction generator, engineering applications of ultrasonic waves.
	(6 Hrs)
	Crystal Structure
	Crystalline and amorphous material, lattice and unit cell, Miller indices, SC,
	BCC, FCC, diamond structure, NaCl structure, imperfections and defects in
	solids
Unit-III	X-Rays
	Basics of X-Rays, Production and Detection of X-Rays, Continuous and
	characteristics spectrum, Bragg's law of X-ray diffraction, Bragg's
	spectrometer, Intensity of diffracted Beams, Particle Size Determination by
	XRD, Precise Lattice Parameter Determination (6 Hrs)
	Nuclear Physics
	Nuclear force, liquid drop model, shell model, Nuclear fission and fusion, Q-
	value of nuclear reaction, nuclear reactor, P-P cycle, C-N cycle, cyclotron,
	GM counter, applications of nuclear physics in various fields.
TI . 4 TT7	Modern Physics
Unit-IV	Black body radiation, Planck' s law, Photoelectric effect, Wave particle
	duality, De- Broglie's concept of matter wave, Davisson-Germer experiment,
	Scanning tunneling microscope, Time-dependent and time-independent
	Schrodinger equation for wave function, Quantum computing.
	(6 Hrs)
	Introduction to solids
TT . *4 T7	Superconductivity: Superconductivity, effect of temperature and magnetic
Unit-V	fields, Meissner effect, type I and II superconductors, BCS theory,
	Applications.

Free electron theory of metals, Fermi level, density of states, Application to
white dwarfs and neutron stars, Bloch's theorem for particles in a periodic
potential, Kronig-Penney model and origin of energy bands

Magnetic Materials: Magnetic susceptibility and diamagnetic materials, paramagnetic, ferromagnetic, and, BH characteristics, applications.

Nanomaterials and Nanotechnology: Properties of nanomaterials, 0 D, 1 D, 2 D and 3 D nanoparticle, various carbon allotropes, historical instances and day to day examples, Introduction to nanotechnology and applications in various engineering fields.

(6 Hrs)

Laser

Unit-VI

Einstein's theory of matter radiation interaction and A and B coefficients, Properties of laser, spontaneous and stimulated emission, ruby laser, He-Ne laser, CO₂ laser and semiconductor Laser, applications of lasers in science, engineering and medicine.

Fiber Technology

Propagation of light through optical fiber, acceptance angle and cone numerical aperture, Single and Multi-Mode Fibers, applications, sensors.

(6 Hrs)

Textbooks/ Reference	Sr. No.	Title	Author	Publication	Edition
Books	1.	A Text book of Engineering Physics	M. N. Avadhanulu P. G. Kshirsagar	S. Chand & Co.	7 th Edition
	2.	A Text book of Engineering Physics	R. K. Gaur S. L. Gupta	Dhanpat Rai	3 rd Edition
	3.	Fundamentals of Physics	David Halliday, Jearl Walker, and Robert Resnick	Wiley	6 th Edition

	4.	Elements of X-ray Diffraction	B. D. Cullity	Addison-Wesley Metallurgy Series	1 st Edition		
	5.	Nuclear Physics	Irving Kaplan	Narosa Publishing house	2 nd Edition		
		Introduction to Solid State Physics	C. Kittel	John Wiley & Sons, Inc	8 th Edition		
	7.	Lasers and Non- Linear Optics	B.B. Laud	New Age International	3 rd Edition		
	1.	http://science.howstuffworks.com/laser1.htm					
	2.	http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html					
Websites	3.	http://nptel.ac.in/cou	urses/122107035/				
and online	4.	http://nptel.ac.in/courses/122104016/ https://www.coursera.org/learn/intro-to-acoustics https://nptel.ac.in/courses/112/106/112106227/					
courses	5.						
	6.						
	7.	https://nptel.ac.in/courses/113/104/113104081/					
	8.	https://nptel.ac.in/co	ourses/115/102/11510	02017/			

Faculty of Science & Technology						
	Syllabus of F. Y. B.Tech. All Branches (Semester II)					
Course Code: 1	BSC103	Credits: 3-0-0				
Course: Open	Elective-II: Engineering	Mid Semester Examination-I: 15 Marks				
Chemistry		Mid Semester Examination-II: 15 Marks				
Teaching Sche	me:	Continuous Internal Evaluation: 10 Marks				
Theory: 03 Hrs	s/week	Teacher Assessment: 10 Marks				
		End Semester Examination: 50 Marks				
		End Semester Examination (Duration):2 Hrs				
	1. To relate the concepts of C	Chemistry in all Engineering Disciplines.				
	2. To make the engineering	ng undergraduates acquainted with modern				
	techniques in engineering a	and industrial Chemistry.				
Objectives	3. To equip engineering und	lergraduates with the knowledge of advanced				
	and existing Engineering Materials.					
	4. To develop the awareness about powering the future using advanced					
	energy Storage Systems.					
	Advanced Engineering Materials					
	Industrial Polymers: Thermo	plastics (PVC) & Thermosetting polymers				
	(Bakelite), Biodegradable polymers (PVa), Properties, Applications					
TT .*4 T	Nanomaterials: Preparation of nano materials by Laser method, properties					
Unit-I	and applications of CNTs.					
	Composite Materials: Cer	ramic matrix composites, carbon- carbon				
	composites					
	Reinforcements: Silicon carbi	de, Fiber glass. (6 Hrs)				
	Water Technology:					
	Water Parameters: Total Diss	olved Solids (TDS), Dissolved Oxygen (DO),				
Unit-II	Chemical Oxygen Demand (COD), pH, Hardness of water: types and units,					
UIIII-II	Estimation of hardness by E	DTA method, numerical on hardness; Boiler				
	troubles: scale, sludge, primi	ng, foaming and caustic embrittlement; Water				
	treatment: Ion exchange proces	ss, Ultra filtration, Nano filtration (6 Hrs)				

	Fuels	s and Energy Storag	e Systems:					
	Fuels	s: Gross and net calor	rific value, Solid fu	els: proximate an	alysis of			
Unit-III	coal	coal & importance, gaseous fuels: composition properties and						
Cint-111	appli	cation of natural gase	s- CNG, LNG.					
	Energ	gy Storage Systems:	: Bio electrochemi	ical batteries, lith	nium-ion			
	batte	ry, alkaline fuel cell (AFC)		(6 Hrs)			
	Lubricants and Coolants							
	Lubr	icants: Introduction,	Properties of liquid	l lubricants: visco	sity and			
T T.	visco	sity index, flash poi	nt and fire point,	acid value. Nume	erical on			
Unit-IV	visco	sity index.						
	Cool	ants: Introduction, 1	properties and use	s of water and	ethylene			
	glyco	ol as coolant.			(6 Hrs)			
	Corr	osion and its Preventi	on					
	Definition, types, mechanism of dry and wet corrosion, Corrosion testing							
Unit-V	metho	ods: ultrasonic testing	, computed digital	radiography, Preve	ention of			
	corrosion: Methods- sacrificial anodic protection, Electroplating, Powder							
	coatin	ng			(6 Hrs)			
	Meta	llurgical Processes						
Unit-VI	Calcination, smelting, ore dressing, roasting, refining of metals,							
	Metalworking processes: casting, forging, rolling, machining, sintering, Laser							
	cladd	ing, 3D printing			(6 Hrs)			
Textbooks/	7 Sr. Title Author Publication							
Reference	No.							
Books	1.	Engineering	- a. a	Mc Graw	3 rd			
		Chemistry	B. Siva Shankar	Hills Publicat	Edition			
				ions	1 ct			
	2.	Engineering	Shelly, Oberi and	Cingage	1 st			
	2	Chemistry	Malik	Publication Viles	Edition 4 th			
	3.	Principles of	Odian, G.G	John Wiley				
		Polymerization		& Sons, Inc Edit	Edition			

	4.	Engineering Chemistry	Jain & Jain	Dhanpat Rai Publishing	16 th Edition	
	5.	Polymer Chemistry	Malcolm P. Stevens	Oxford University Press	3 rd Edition	
	6.	A Textbook of Engineering Chemistry	Shashi Chawla	Dhanpat Rai &	10 th Edition	
	7.	Material Science & Engineering	William Callister and V. Raghavan	Wiley	9 th Edition	
	1.	Unit- I — https://onlinecourses.nptel.ac.in/noc21 ch49/preview https://www.explainthatstuff.com/composites.html				
Websites	2.	Unit- II — https://nptel.ac.in/content/storage2/courses/116104045/lecture8.pdf https://nptel.ac.in/content/storage2/courses/116104045/lecture6.pdf Unit- III — https://nptel.ac.in/content/storage2/courses/121106014/Week12/lecture38.pdf https://www.sciencedirect.com/topics/engineering/proximate-analysis				
and online courses	3.					
	4.	Unit- IV — https://nptel.ac.in/courses/112/102/112102014/https://nptel.ac.in/content/storage2/courses/112105127/pdf/LM-12.pdf				
	5.	Unit- V - https://nptel.ac.in/courses/113/108/113108051/				
	6.	Unit- VI -https://nptel.a	c.in/courses/112/107/1	12107144/		

Faculty of Science & Technology Syllabus of F. Y. B.Tech. All Branches (Semester II)

Unit-II Introduction to Molecular Biology, Central Dogma of life, DNA replication and transcription, Introduction to Genetics, Phylogenetic and Introduction to developmental biology, structure and functions of cell. (8 Introduction to immunology, components of the immune system, antigenentiation and differentiation and differentiation and differentiation, Complement system. (6 Unit-III Infectious diseases, TB, HIV, Flue, COVID-19, response of host to infect diseases. Vaccines, cancer biology. (4 Introduction to bioinformatics, tools of bioinformatics, primary and second data bases, sequence alignments, methods of structure prediction of prohomology modeling (6 Introduction to Analytical Instrumentation, Electrophoresis technical and Chromatography types and techniques, Isoelectric focusing, PCR and ELISA (6) Environmental biosafety, bioresources, biodiversity, bioreactors, ethical as of plant and animal biotechnology, Engineering designs inspired by example Unit-VI	Course: Open Elective-I: Biology for Engineers Mid Semester Examination-I: 15 Marks Mid Semester Examination-II: 15 Marks Continuous Internal Evaluation: 10 Marks					
Engineers Teaching Scheme: Theory: 03 Hrs/week To introduce students to modem biology with an emphasis on evolutional biological examples. Introduction to Molecular Biology, Central Dogma of life, DNA replicational Introduction to developmental biology, structure and functions of cell. (8) Introduction to developmental biology, structure and functions of cell. (8) Introduction to immunology, components of the immune system, antigen antibodies, B-cells and T- cells development, proliferation and differentian MHC Restriction, Complement system. (6) Unit-II Infectious diseases, TB, HIV, Flue, COVID-19, response of host to infect diseases. Vaccines, cancer biology. (4) Introduction to bioinformatics, tools of bioinformatics, primary and secondate bases, sequence alignments, methods of structure prediction of prohomology modeling (6) Introduction to Analytical Instrumentation, Electrophoresis technical as of plant and animal biotechnology, Engineering designs inspired by examp Unit-VI Unit-VI Intervious diseases, biodiversity, bioreactors, ethical as of plant and animal biotechnology, Engineering designs inspired by examp	Engineers Mid Semester Examination-II: 15 Marks Teaching Scheme: Continuous Internal Evaluation: 10 Marks					
Teaching Scheme: Theory: 03 Hrs/week Teacher Assessment: 10 Marks End Semester Examination: 50 Marks End Semester Examination (Duration):2 Hrs To introduce students to modem biology with an emphasis on evolution biology as a multi-disciplinary field, to make them aware of application engineering principles in biology, and engineering robust solutions inspired biological examples. Introduction to Molecular Biology, Central Dogma of life, DNA replication and transcription, Introduction to Genetics, Phylogenetic and Introduction to developmental biology, structure and functions of cell. (8) Introduction to immunology, components of the immune system, antigen antibodies, B-cells and T- cells development, proliferation and differentification, Complement system. (6) Unit-III Infectious diseases, TB, HIV, Flue, COVID-19, response of host to infect diseases. Vaccines, cancer biology. (4) Introduction to bioinformatics, tools of bioinformatics, primary and secondata bases, sequence alignments, methods of structure prediction of prohomology modeling (6) Unit-IV Introduction to Analytical Instrumentation, Electrophoresis technical as of plant and animal biotechnology, Engineering designs inspired by examp	Teaching Scheme: Continuous Internal Evaluation: 10 Marks					
Theory: 03 Hrs/week Teacher Assessment: 10 Marks End Semester Examination: 50 Marks End Semester Examination (Duration):2 Hrs To introduce students to modem biology with an emphasis on evolution biology as a multi-disciplinary field, to make them aware of application engineering principles in biology, and engineering robust solutions inspired biological examples. Introduction to Molecular Biology, Central Dogma of life, DNA replication and transcription, Introduction to Genetics, Phylogenetic and Introduction to developmental biology, structure and functions of cell. (8) Introduction to immunology, components of the immune system, antigen antibodies, B-cells and T- cells development, proliferation and differention MHC Restriction, Complement system. (6) Infectious diseases, TB, HIV, Flue, COVID-19, response of host to infect diseases. Vaccines, cancer biology. (4) Introduction to bioinformatics, tools of bioinformatics, primary and secondate bases, sequence alignments, methods of structure prediction of prohomology modeling (6) Introduction to Analytical Instrumentation, Electrophoresis technical as of plant and animal biotechnology, Engineering designs inspired by examp of plant and animal biotechnology, Engineering designs inspired by examp						
To introduce students to modem biology with an emphasis on evolution biology as a multi-disciplinary field, to make them aware of application engineering principles in biology, and engineering robust solutions inspired biological examples. Introduction to Molecular Biology, Central Dogma of life, DNA replication and transcription, Introduction to Genetics, Phylogenetic and Introduction to developmental biology, structure and functions of cell. (8) Introduction to immunology, components of the immune system, antigen antibodies, B-cells and T- cells development, proliferation and differentiment. MHC Restriction, Complement system. (6) Unit-III Infectious diseases, TB, HIV, Flue, COVID-19, response of host to infect diseases. Vaccines, cancer biology. (4) Introduction to bioinformatics, tools of bioinformatics, primary and secondata bases, sequence alignments, methods of structure prediction of proceeding. (6) Introduction to Analytical Instrumentation, Electrophoresis technical as of plant and animal biotechnology, Engineering designs inspired by examp of plant and animal biotechnology, Engineering designs inspired by example the content of the proceeding of plant and animal biotechnology, Engineering designs inspired by example the content of the proceeding of plant and animal biotechnology, Engineering designs inspired by example the proceeding of plant and animal biotechnology, Engineering designs inspired by example the proceeding of plant and animal biotechnology, Engineering designs inspired by example the proceeding of plant and animal biotechnology, Engineering designs inspired by example the proceeding of plant and animal biotechnology, Engineering designs inspired by example the proceeding of the proceeding of plant and animal biotechnology, Engineering designs inspired by example the proceeding of the p	Theorem 02 Hardwoods	3				
To introduce students to modem biology with an emphasis on evolution biology as a multi-disciplinary field, to make them aware of application engineering principles in biology, and engineering robust solutions inspire biological examples. Introduction to Molecular Biology, Central Dogma of life, DNA replication and transcription, Introduction to Genetics, Phylogenetic and Introduction to developmental biology, structure and functions of cell. (8) Introduction to immunology, components of the immune system, antigen antibodies, B-cells and T- cells development, proliferation and differenti MHC Restriction, Complement system. (6) Infectious diseases, TB, HIV, Flue, COVID-19, response of host to infect diseases. Vaccines, cancer biology. (4) Introduction to bioinformatics, tools of bioinformatics, primary and secondata bases, sequence alignments, methods of structure prediction of prohomology modeling (6) Introduction to Analytical Instrumentation, Electrophoresis technical and Chromatography types and techniques, Isoelectric focusing, PCR and ELISA (6) Environmental biosafety, bioresources, biodiversity, bioreactors, ethical as of plant and animal biotechnology, Engineering designs inspired by example the content of the properties of the content of the conte	Theory: 03 Hrs/week Teacher Assessment: 10 Marks					
To introduce students to modem biology with an emphasis on evolution biology as a multi-disciplinary field, to make them aware of application engineering principles in biology, and engineering robust solutions inspire biological examples. Introduction to Molecular Biology, Central Dogma of life, DNA replication and transcription, Introduction to Genetics, Phylogenetic and Introduction to developmental biology, structure and functions of cell. (8) Introduction to immunology, components of the immune system, antigent antibodies, B-cells and T- cells development, proliferation and differention MHC Restriction, Complement system. (6) Unit-III Infectious diseases, TB, HIV, Flue, COVID-19, response of host to infect diseases. Vaccines, cancer biology. (4) Introduction to bioinformatics, tools of bioinformatics, primary and secondata bases, sequence alignments, methods of structure prediction of promomology modeling (6) Introduction to Analytical Instrumentation, Electrophoresis technical and Chromatography types and techniques, Isoelectric focusing, PCR and ELISA (6) Environmental biosafety, bioresources, biodiversity, bioreactors, ethical as of plant and animal biotechnology, Engineering designs inspired by example to the property of the pr	End Semester Examination: 50 Marks					
biology as a multi-disciplinary field, to make them aware of application engineering principles in biology, and engineering robust solutions inspire biological examples. Introduction to Molecular Biology, Central Dogma of life, DNA replication and transcription, Introduction to Genetics, Phylogenetic and Introduction to developmental biology, structure and functions of cell. (8) Introduction to immunology, components of the immune system, antigen antibodies, B-cells and T- cells development, proliferation and differention MHC Restriction, Complement system. (6) Infectious diseases, TB, HIV, Flue, COVID-19, response of host to infect diseases. Vaccines, cancer biology. (4) Introduction to bioinformatics, tools of bioinformatics, primary and secondata bases, sequence alignments, methods of structure prediction of prohomology modeling (6) Introduction to Analytical Instrumentation, Electrophoresis technical and the complex of plant and animal biotechnology, Engineering designs inspired by example unit-VI Unit-VI	End Semester Examination (Duration):2 I	Hrs				
engineering principles in biology, and engineering robust solutions inspired biological examples. Introduction to Molecular Biology, Central Dogma of life, DNA replication and transcription, Introduction to Genetics, Phylogenetic and Introduction to developmental biology, structure and functions of cell. (8) Introduction to immunology, components of the immune system, antigent antibodies, B-cells and T- cells development, proliferation and differention MHC Restriction, Complement system. (6) Unit-III Infectious diseases, TB, HIV, Flue, COVID-19, response of host to infect diseases. Vaccines, cancer biology. (4) Introduction to bioinformatics, tools of bioinformatics, primary and secondata bases, sequence alignments, methods of structure prediction of profonology modeling (6) Introduction to Analytical Instrumentation, Electrophoresis technical and the components of the immune system and techniques, Isoelectric focusing, PCR and ELISA (6) Environmental biosafety, bioresources, biodiversity, bioreactors, ethical as of plant and animal biotechnology, Engineering designs inspired by example the production of plant and animal biotechnology, Engineering designs inspired by example the production to the production of plant and animal biotechnology, Engineering designs inspired by example the production to the production of plant and animal biotechnology, Engineering designs inspired by example the production to the production of the production of	To introduce students to modem biology with an emphasis on evo	lution of				
engineering principles in biology, and engineering robust solutions inspired biological examples. Introduction to Molecular Biology, Central Dogma of life, DNA replication and transcription, Introduction to Genetics, Phylogenetic and Introduction to developmental biology, structure and functions of cell. (8) Introduction to immunology, components of the immune system, antigent antibodies, B-cells and T- cells development, proliferation and differention MHC Restriction, Complement system. (6) Infectious diseases, TB, HIV, Flue, COVID-19, response of host to infect diseases. Vaccines, cancer biology. (4) Introduction to bioinformatics, tools of bioinformatics, primary and second data bases, sequence alignments, methods of structure prediction of promology modeling (6) Introduction to Analytical Instrumentation, Electrophoresis technical and the composition of promology modeling (6) Environmental biosafety, bioresources, biodiversity, bioreactors, ethical as of plant and animal biotechnology, Engineering designs inspired by example unit-VI	biology as a multi-disciplinary field, to make them aware of applic	cation of				
Introduction to Molecular Biology, Central Dogma of life, DNA replication. Translation and transcription, Introduction to Genetics, Phylogenetic ana Introduction to developmental biology, structure and functions of cell. (8 Introduction to immunology, components of the immune system, antigen antibodies, B-cells and T- cells development, proliferation and differention MHC Restriction, Complement system. (6 Infectious diseases, TB, HIV, Flue, COVID-19, response of host to infect diseases. Vaccines, cancer biology. (4 Introduction to bioinformatics, tools of bioinformatics, primary and secondata bases, sequence alignments, methods of structure prediction of prohomology modeling (6 Introduction to Analytical Instrumentation, Electrophoresis technical and Chromatography types and techniques, Isoelectric focusing, PCR and ELISA (6) Environmental biosafety, bioresources, biodiversity, bioreactors, ethical as of plant and animal biotechnology, Engineering designs inspired by example the control of the control of plant and animal biotechnology, Engineering designs inspired by example the control of the	engineering principles in biology, and engineering robust solutions in	engineering principles in biology, and engineering robust solutions inspired by				
Unit-II Translation and transcription, Introduction to Genetics, Phylogenetic and Introduction to developmental biology, structure and functions of cell. (8 Introduction to immunology, components of the immune system, antigent antibodies, B-cells and T- cells development, proliferation and differention MHC Restriction, Complement system. (6 Unit-III Infectious diseases, TB, HIV, Flue, COVID-19, response of host to infect diseases. Vaccines, cancer biology. (4 Introduction to bioinformatics, tools of bioinformatics, primary and second data bases, sequence alignments, methods of structure prediction of proceed to the monology modeling (6) Introduction to Analytical Instrumentation, Electrophoresis technical materials in the components of plant and animal biotechnology, Engineering designs inspired by example Unit-VI	biological examples.					
Introduction to developmental biology, structure and functions of cell. (8 Introduction to immunology, components of the immune system, antigentantibodies, B-cells and T- cells development, proliferation and differentify MHC Restriction, Complement system. (6 Unit-III Infectious diseases, TB, HIV, Flue, COVID-19, response of host to infect diseases. Vaccines, cancer biology. (4 Introduction to bioinformatics, tools of bioinformatics, primary and second data bases, sequence alignments, methods of structure prediction of prohomology modeling (6 Introduction to Analytical Instrumentation, Electrophoresis technical and the complete of the complet	Introduction to Molecular Biology, Central Dogma of life, DNA re-	plication,				
Introduction to immunology, components of the immune system, antigent antibodies, B-cells and T- cells development, proliferation and differention MHC Restriction, Complement system. (6 Unit-III Infectious diseases, TB, HIV, Flue, COVID-19, response of host to infect diseases. Vaccines, cancer biology. (4 Introduction to bioinformatics, tools of bioinformatics, primary and second data bases, sequence alignments, methods of structure prediction of prohomology modeling (6 Introduction to Analytical Instrumentation, Electrophoresis technical and techniques, Isoelectric focusing, PCR and ELISA (6 Environmental biosafety, bioresources, biodiversity, bioreactors, ethical as of plant and animal biotechnology, Engineering designs inspired by example the control of the immune system, antigent antibodies. (6)	Unit-I Translation and transcription, Introduction to Genetics, Phylogenetic	analysis,				
Unit-II antibodies, B-cells and T- cells development, proliferation and differention MHC Restriction, Complement system. (6 Unit-III Infectious diseases, TB, HIV, Flue, COVID-19, response of host to infect diseases. Vaccines, cancer biology. (4 Introduction to bioinformatics, tools of bioinformatics, primary and second data bases, sequence alignments, methods of structure prediction of prophomology modeling (6 Introduction to Analytical Instrumentation, Electrophoresis technical Chromatography types and techniques, Isoelectric focusing, PCR and ELISA (6 Environmental biosafety, bioresources, biodiversity, bioreactors, ethical as of plant and animal biotechnology, Engineering designs inspired by examp	Introduction to developmental biology, structure and functions of cell.	(8 Hrs)				
MHC Restriction, Complement system. (6 Unit-III Infectious diseases, TB, HIV, Flue, COVID-19, response of host to infect diseases. Vaccines, cancer biology. (4 Introduction to bioinformatics, tools of bioinformatics, primary and second data bases, sequence alignments, methods of structure prediction of prohomology modeling (6 Introduction to Analytical Instrumentation, Electrophoresis technic Chromatography types and techniques, Isoelectric focusing, PCR and ELISA (6 Environmental biosafety, bioresources, biodiversity, bioreactors, ethical as of plant and animal biotechnology, Engineering designs inspired by example Unit-VI	Introduction to immunology, components of the immune system, anti	gens and				
Unit-III Infectious diseases, TB, HIV, Flue, COVID-19, response of host to infect diseases. Vaccines, cancer biology. (4 Introduction to bioinformatics, tools of bioinformatics, primary and second data bases, sequence alignments, methods of structure prediction of prohomology modeling (6 Introduction to Analytical Instrumentation, Electrophoresis technical Chromatography types and techniques, Isoelectric focusing, PCR and ELISA (6 Environmental biosafety, bioresources, biodiversity, bioreactors, ethical as of plant and animal biotechnology, Engineering designs inspired by examp	Unit-II antibodies, B-cells and T- cells development, proliferation and different	antibodies, B-cells and T- cells development, proliferation and differentiation,				
Unit-III diseases. Vaccines, cancer biology. (4 Introduction to bioinformatics, tools of bioinformatics, primary and second data bases, sequence alignments, methods of structure prediction of prohomology modeling (6 Introduction to Analytical Instrumentation, Electrophoresis technical Chromatography types and techniques, Isoelectric focusing, PCR and ELISA (6 Environmental biosafety, bioresources, biodiversity, bioreactors, ethical as of plant and animal biotechnology, Engineering designs inspired by examp	MHC Restriction, Complement system.	(6 Hrs)				
Unit-IV data bases, sequence alignments, methods of structure prediction of prohomology modeling (6 Introduction to Analytical Instrumentation, Electrophoresis technical Chromatography types and techniques, Isoelectric focusing, PCR and ELISA (6 Environmental biosafety, bioresources, biodiversity, bioreactors, ethical as of plant and animal biotechnology, Engineering designs inspired by examp	Infectious diseases, TB, HIV, Flue, COVID-19, response of host to i	nfectious				
Unit-IV data bases, sequence alignments, methods of structure prediction of prohomology modeling Introduction to Analytical Instrumentation, Electrophoresis technic Chromatography types and techniques, Isoelectric focusing, PCR and ELISA (6 Environmental biosafety, bioresources, biodiversity, bioreactors, ethical as of plant and animal biotechnology, Engineering designs inspired by examp	diseases. Vaccines, cancer biology.	(4 Hrs)				
homology modeling Introduction to Analytical Instrumentation, Electrophoresis technic Chromatography types and techniques, Isoelectric focusing, PCR and ELISA (6 Environmental biosafety, bioresources, biodiversity, bioreactors, ethical as of plant and animal biotechnology, Engineering designs inspired by examp	Introduction to bioinformatics, tools of bioinformatics, primary and s	econdary				
Unit-V Introduction to Analytical Instrumentation, Electrophoresis technic Chromatography types and techniques, Isoelectric focusing, PCR and ELISA (6 Environmental biosafety, bioresources, biodiversity, bioreactors, ethical as of plant and animal biotechnology, Engineering designs inspired by examp	Unit-IV data bases, sequence alignments, methods of structure prediction of	proteins,				
Unit-V Chromatography types and techniques, Isoelectric focusing, PCR and ELISA (6 Environmental biosafety, bioresources, biodiversity, bioreactors, ethical as of plant and animal biotechnology, Engineering designs inspired by examp	homology modeling	(6 Hrs)				
Environmental biosafety, bioresources, biodiversity, bioreactors, ethical as of plant and animal biotechnology, Engineering designs inspired by examp	Introduction to Analytical Instrumentation, Electrophoresis tec	chniques,				
Environmental biosafety, bioresources, biodiversity, bioreactors, ethical as of plant and animal biotechnology, Engineering designs inspired by examp	Unit-V Chromatography types and techniques, Isoelectric focusing, PCR and EL	JSA				
of plant and animal biotechnology, Engineering designs inspired by examp		(6 Hrs)				
Unit-VI						
history Engineering consets of some Nobel Drives in Dhysiology and Mac	Environmental biosafety, bioresources, biodiversity, bioreactors, ethica	al aspects				
biology, Engineering aspects of some Nobel Prizes in Physiology and Med	of plant and animal biotechnology, Engineering designs inspired by exa	•				
& Chemistry / recent advances in Biology (6	of plant and animal biotechnology, Engineering designs inspired by exa	amples in				

Textbooks/ Reference	Sr.	Title	Author	Publication	Edition
Reference	No.				
Books	1.	Essentials of Genetics.	Miko, I. &	Cambridge, MA:	2009
			Lejeune, L.,	NPG Education	
			eds.		
	2.	Essentials of Cell	O'Connor, C.	Cambridge, MA:	2010
		Biology	M. & Adams,	NPG Education	
			J. U.		
	3.	Molecular Biology of	Warson JD,	Pearson	2004
		the Gene	Baker, TA,	Education	
			Bell SP, Gann		
			A, Levin M,		
			Losick R,		
	4.	The Greatest Show on	Dawkins, R	Bantam Press,	2009
		Earth: The Evidence		Transworld	
		For Evolution		Publishers	
	5.	The Blind	Dawkins, R	W. W. Norton &	1996
		Watchmaker		Со	
	6.	The Double Helix: A	Watson, J. D.	Simon & Schuster	2011
		Personal Account of		Inc.	
		the Discovery of the			
		Structure of DNA			

	Faculty of Science & Technology					
	Syllabus of F. Y. B. Tech. All Branches (Semester II)					
Course Code:	ESC251 Credits: 0-0-1					
Course: Lab-I	End Semester Examination/Oral: 25 Marks					
Teaching Sch	eme:					
Practical: 02 I	Hrs/week					
	Course will enable students to develop programs in python programming					
Objectives	language and identify use of various data structures available in python.					
	1. Installation of Python and IDE for Python Programming – Pycharm					
	2. Using flowchart and algorithm for problem solving					
	3. Develop program using arithmetic operations in python					
	4. Develop program using conditional statements (if-else) and logical					
	operators in python					
List of	5. Develop program using conditional statements (if-elif-else) and					
Practical	relational operators in python					
(Any 10	6. Develop program using conditional statements (nested-if) in python					
Practical)	7. Develop program using loops in python					
	8. Develop program using nested loops in python					
	9. Develop program using function in python.					
	10. Develop program to demonstrate operations on python lists					
	11. Develop program to demonstrate operations on python sets					
	12. Develop program to demonstrate operations on python tuple					
	13. Develop program to demonstrate operations on python dictionary					

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

Faculty of Science & Technology						
Syllabus of F. Y. B.Tech. Non-Circuit Branches (Semester II)						
Course Code:	ESC252	Credits: 0-0-1				
Course: Lab-I	I: Engineering Mechanics	Teacher Assessment: 25 Marks				
Teaching Scho	eme: Practical: 02 Hrs/week					
	A Knowledge of Engineering M	lechanics help the engineers to deal with the				
Objectives	facts, laws, principles and app	lications to the real life problems through				
	which the creation of new systems by way of research, design and					
	developments in engineering pra	actices.				
	Part I: Graphical Solutions: (7	Two problems each)				
	1. Resultant of Concurrent and Non- Concurrent Coplanar Force System					
	2. Problems on Beam Reaction					
	3. Problems on Analysis of Pin	-jointed Trusses				
	Part II: Laboratory Experime	nts: (Any Six)				
List of	1. Parallelogram Law of Forces					
Practical	2. Lami's Theorem					
	3. Beam Reactions					
	4. Member Forces in Trusses					
	5. Jib Crane					
6. Moment of Inertia of Fly Wheel						
7. Simple Screw Jack						
	8. Differential Axle and Wheel					
	9. Belt Friction					

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

Faculty of Science & Technology

Syllabus of F. Y. B.Tech. Non-Circuit Branches (Semester II)

Course code- ESC253 Credits: 0-0-1

Course Title: Lab III: Electrical and Electronics | Teacher Assessment: 25 Marks

Engineering End Semester Examination/Oral: 25

Teaching Scheme: Practical: 02 Hrs/week Marks

List of

Electrical Engineering

Practical (Any 5

practical

from each

section)

- 1. To study the accessories to be used in household wirings and awareness of electric safety
- 2. i) To understand the concept of Phase, Neutral & Earthling in Electrical Installation.
 - ii) Single Lamp controlled by single switch circuit.
- 3. To study & Demonstrate Staircase Wiring.
- 4. To study & understand the importance of Series Lamp.
- 5. To Verify Ohm's Law.
- 6. To verify the Voltage Ratio of Single-Phase Transformer.

Electronics Engineering

- 7. To study characteristics of Semiconductor diode.
- 8. To study Half Wave and Full Wave Rectifier.
- 9. To plot the characteristics of BJT in CE configuration.
- 10. To study logic gate application as a Half Adder
- 11. To study use of LVDT for displacement measurement
- 12. Implementation and testing of circuits like amplifier, Power supply on bread board.

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

Faculty of Science & Technology Syllabus of F. Y. B.Tech. All Branches (Semester II)

Course Code: BSC201 Credits: 0-0-1

Course: Lab-IV Open Elective-II: Engineering Teacher Assessment: 25 Marks

Physics

Teaching Scheme: Practical: 02 Hrs/week

Any 10 practical to be conducted

1. Newton's ring: To determine wavelength of monochromatic light

2. G. M. Counter: dead time calculation

3. Grating: To determine wavelength of LASER light.

4. Polarimeter: To determine concentration of solution.

5. Reverberation time: To determine Reverberation time of a hall.

6. Characteristics of solar cell

List of

Practical

7. Ultrasonic interferometer

- 8. Zener diode: To study characteristics of zener diode & to determine zener voltage.
- 9. Dielectric constant: to determine dielectric constant.
- 10. Forbidden gap: To determine forbidden gap of semiconductors.
- 11. Transistor Characteristics in CE Configuration.
- 12. To determine the Hall coefficient of a semiconductor material and then evaluate carrier type and its density of charge carrier.
- 13. Planck's Constant
- 14. To measure the divergence of the laser beam

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

Faculty of Science & Technology Syllabus of F. Y. B.Tech. All Branches (Semester II)

Course Code: BSC202 Credits: 0-0-1

Course Lab-IV Open Elective-II: Engineering Teacher Assessment: 25 Marks

Chemistry

Teaching Scheme: Practical: 02 Hrs/week

Any 10 practical to be conducted

1. Lab safety experiment

2. Preparation and standardization of analytical reagents

3. Analysis of Chemical parameters of water

4. Analysis of physical parameters of water

5. Determination of percentage of moisture and ash in given coal sample.

6. Determination of Acid value/ saponification value of lubricating oil.

List of

Practical

- 7. Determination of viscosity of chemical compound
- 8. Preparation of polymer
- 9. Electro gravimetric Estimation of Metals (Virtual experiment)
- 10. Determination of chloride content of water by Mohr's method (Virtual experiment)
- 11. Determination of melting or boiling point of organic compound.(Virtual experiment)
- 12. Determination of rate of corrosion in different pH media. (Virtual experiment)
- 13. Preparation of nano materials
- 14. Determination of molecular weight of polymer using Ostwald's viscometer

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

Faculty of Science & Technology							
Syllabus of F. Y. B.Tech. All Branches (Semester II)							
Course Code: BSC203 Credits: 0-0-1							
Course: Lab-I	IV Open Elective-II: Biology for	Гeacher Assessment: 25 Marks					
Engineers							
Teaching Scho	eme: Practical: 02 Hrs/week						
	Biosafety laboratory practices and biological waste disposal						
	2. Buffers in biology, buffering c	apacity and pKa					
	3. Observing cell surface and intracellular contents using light and/or						
	fluorescence microscopy						
	4. Measuring mechanical strength	n of cells - osmolarity and elasticity of					
	biological membranes						
	5. Protein and DNA isolation from	m plant cells, visualization of proteins and					
List of	DNA						
Practical	Practical 6. Microbial culture - growth curve and enumeration methods						
	7. Basic molecular biology techniques - including isolation of bacterial						
	plasmids demos on Polymerase Chain Reaction and Restriction						
	Fragment Length Polymorphis	m					
	8. Mammalian and plant cell cult	ure methods					

- Continuous assessment
- Performing the experiments in the laboratory
- Oral examination conducted on the syllabus and term work mentioned above.

Faculty of Science & Technology						
Syllabus of F. Y. B.Tech. All Branches (Semester II)						
Course Code: HS	SM251		Credits: 0-0-1			
Course: Lab-V:	Cognit	ive Aptitude	Teacher Assessi	ment: 25 Marks		
Teaching Schem	e: Prac	etical: 02 Hrs/week				
Objectives		improve cognitive aption improve thinking abilit				
Unit-I	Appl Syste	duction to aptitude ications of HCF and lems, Ages, Averages, est, Compound Interest,	Percentage, Ra	-		
Unit-II	Divisibility Rules, Time & Work, Pipes and Cisterns, Boats and Streat Unit-II Partnerships, Problems on Trains, Working with different efficienc Work equivalence, Division of wages. (4 H					
Unit-III	Deci	tive Speed, Problems bar mals, Fundamental Cou bination, Probability.		•		
Unit-IV	letter	ng Decoding, Direction, number, mixed), Rogism, Inequaliies.				
Unit-V	State	ng Arrangements, Cloc ments & Course of A e Analysis (mirror & wa	ction, Cause a			
Unit-VI Comprehension, Double Fillers, Para jumbled sentences, One-w					, i	
Textbooks/ Sr. Reference No. Title Author Publication Ed						
Books	1.	Quantitative Aptitude for Competitive	Dr. R. S. Aggarwal	S. Chand Publications	2017	

		Examinations			
	2.	A Modern Approach	Dr. R. S.	S. Chand	2010
		to Logical Reasoning	Aggarwal	Publications	2018
		The Hands-on Guide			
	2	to Analytical	Peeyush	Arihant	2015
	3.	Reasoning and	Bhardwaj	Publication	2013
		Logical Reasoning			
	4.	Quantitative Aptitude	Dinesh	Pearson	4 th
		for Campus Interview	Khattar		Edition
		Vol I	Kilattai		Lattion
	5.	How to Prepare for	Arun	McGraw Hill	5 th
		Logical Reasoning	Sharma	Publication	Edition
	6.	Logical Reasoning	Nishit Sinha Pearson	7 th	
		and DI	Misint Sinna	Publication	Edition
	7.	Critical Thinking	Moore,	McGraw Hill	13 th
		Citical Tilliking	Parker	Publication	Edition
	8.	How to Prepare for	Arun	Tata McGraw	5 th
		Quantitative Aptitude	Sharma	Hill	Edition

- Continuous assessment
- Examination conducted on the syllabus.

Faculty of Science & Technology

Syllabus of F. Y. B.Tech. All Branches (Semester II)

Course Code: HSM252

Course: Non-Credit Mandatory Course (German Language)

Teaching Scheme: Practical: 02 Hrs./week

sentences accurately. Students will be able to understand and apply German language eventually. Students will be able to develop German language skills. Students will be able to manage situational communication in German. Unit-I : Introduction - Self –Introduction - Nos. up to 10,000 - Weekdays, Months - Date and Time - Greetings (6 H Unit-II : Vocabulary - My house	Objectives	Students will be able to apply communicative German Gramm	nor in			
Students will be able to enhance the level of German vocabulary. Students will be able to pronounce and articulate words as well sentences accurately. Students will be able to understand and apply German language eventually. Students will be able to develop German language skills. Students will be able to manage situational communication in German. Unit-I Introduction Self—Introduction Nos. up to 10,000 Weekdays, Months Date and Time Greetings (6 H Unit-II Vocabulary My house			nai III			
Students will be able to pronounce and articulate words as well sentences accurately. Students will be able to understand and apply German language eventually. Students will be able to develop German language skills. Students will be able to manage situational communication in German. Unit-I Introduction Self—Introduction Nos. up to 10,000 Weekdays, Months Date and Time Greetings (6 H Unit-II Vocabulary My house		communication.				
sentences accurately. Students will be able to understand and apply German language eventually. Students will be able to develop German language skills. Students will be able to manage situational communication in German. Unit-I : Introduction - Self –Introduction - Nos. up to 10,000 - Weekdays, Months - Date and Time - Greetings (6 H Unit-II : Vocabulary - My house		Students will be able to enhance the level of German vocabulary.				
Students will be able to understand and apply German language eventually. Students will be able to develop German language skills. Students will be able to manage situational communication in German. Unit-I : Introduction - Self –Introduction - Nos. up to 10,000 - Weekdays, Months - Date and Time - Greetings (6 H Unit-II : Vocabulary - My house		• Students will be able to pronounce and articulate words as well as				
eventually. Students will be able to develop German language skills. Students will be able to manage situational communication in German. Unit-I Introduction Self —Introduction Nos. up to 10,000 Weekdays, Months Date and Time Greetings (6 H Unit-II Vocabulary My house		sentences accurately.				
 Students will be able to develop German language skills. Students will be able to manage situational communication in German. Unit-I Introduction Self –Introduction Nos. up to 10,000 Weekdays, Months Date and Time Greetings Wocabulary My house Vocabulary My house 		• Students will be able to understand and apply German language				
Students will be able to manage situational communication in German. Introduction Self –Introduction Nos. up to 10,000 Weekdays, Months Date and Time Greetings (6 H Unit-II : Vocabulary My house		eventually.				
Unit-I : Introduction - Self –Introduction - Nos. up to 10,000 - Weekdays, Months - Date and Time - Greetings (6 H Unit-II : Vocabulary - My house		·				
- Self –Introduction - Nos. up to 10,000 - Weekdays, Months - Date and Time - Greetings (6 H Unit-II : Vocabulary - My house						
- Nos. up to 10,000 - Weekdays, Months - Date and Time - Greetings (6 H Unit-II : Vocabulary - My house	Unit-I	: Introduction				
- Weekdays, Months - Date and Time - Greetings (6 H Unit-II : Vocabulary - My house		- Self –Introduction				
- Date and Time - Greetings (6 H Unit-II : Vocabulary - My house		- Nos. up to 10,000				
Unit-II : Vocabulary - My house (6 H		- Weekdays, Months				
Unit-II : Vocabulary - My house		- Date and Time				
- My house		- Greetings (6 Hrs)			
	Unit-II	: Vocabulary				
- My family		- My house				
Tity failing		- My family				
- Daily routine		- Daily routine				
- Hobbies		- Hobbies				
- Food (6 Hr		- Food (6	6 Hrs)			
Unit-III : Grammar	Unit-III	: Grammar				
- Verb forms (Present Tense)		- Verb forms (Present Tense)				
		- Articles				
- Articles		- Possessive pronouns				

		- Auxiliary ve	rbs			
		- Wh-Questions / Yes-No Questions				
		- Past-Tense o	(12 Hrs)			
Textbooks/	Sr.	Title	Author	Publication	Edition	
Reference	No.					
Books	1.	German Made Simple:	Arnold	Crown	2006	
		Learn to speak and	Leitner			
		understand German				
		quickly and easily				
	2.	The Everything Learning		Adams Media	2 nd Edition	
		German Book: Speak,	Edward			
		write, and understand	Swick			
		basic German in no time				
	3.	Langenscheidt German in	Von	Langenscheidt	2007	
		30 Days	Angelika			
			G. Beck			
	4.	Complete German	Heiner	The McGraw	1 st Edition	
		Beginner to Intermediate	Schenke	Hill		
		Book and Audio Course:				
		Learn to read, write,				
		speak and understand a				
		new language with Teach				
		Yourself				
	5.	German: How to Speak	Joseph	BN	2011	
		and Write It (Beginners'	Rosenberg	Publishing		
		Guides)				
	6.	Collins Easy Learning –	Collins	Collins	2016	
		Collins Easy Learning				
		German Grammar and				
		Practice				

Faculty of Science & Technology

Syllabus of F. Y. B.Tech. All Branches (Semester II)

Course Code: HSM253

Course: Non-Credit Mandatory Course (Japanese Language)

Teaching Scheme: Practical: 02 Hrs./week

Teaching Sci	neme:	Practical: 02 Hrs./week				
Objectives	1. 5	Students will be able	to apply communicate	ve Japanese Gi	rammar in	
	C	communication.				
	2. \$	Students will be able to	enhance the level of Japa	nese vocabulary.		
	3. \$	Students will be able to	pronounce and articulate	words as well as	s sentences	
	a	accurately.				
	4. \$	Students will be able to understand and apply Japanese language eve				
	5. \$	Students will be able to develop Japanese language skills.				
	6. 5	Students will be able to 1	manage situational comm	nunication in Japa	anese.	
Unit-I	:	Introduction				
		- Introdu	ction			
		- Numbe	rs			
		- Days, N	Months, Dates		(8 Hrs)	
Unit-II	:	Grammar				
		- Verb ar	nd verb forms			
		- Present	and Past Tense		(8 Hrs)	
Unit-III	:	Communication				
		- Introduction of Japanese script				
		- Dialogues (Shopping, in the restaurant)				
		- Themes: Family, my city, my country, my friend (8 Hrs)				
Textbooks/	Sr.	Title	Author	Publication	Edition	
Reference	No.					
Books	1.	Japanese Kanji for	Timothy G. Stout and	Tuttle	2017	
		Beginners	Kaori Hakone	Publishing		
	2.	Essential Japanese	Masahiro	Tuttle	2012	
	1	1			i l	

Tanimori and Eriko

Grammar: A

Publishing

	T = - :			
	Comprehensive	Sato Ph.D.		
	Guide to			
	Contemporary			
	Usage			
3.	15-Minute Japanese:	D.K. Goel and Rajesh	DK	2019
	Learn in Just 12	Goel		
	Weeks			
4.	Oxford Japanese	Bunt Jonathan	Oxford	2003
	Grammar and Verbs		University	
	(Dictionary)		Press	
5.	Read and write	Helen Gilhooly	Teach	1 st
	Japanese scripts:		Yourself	Edition
	Teach yourself			
6.	Complete Japanese	Helen Gilhooly	Teach	3 rd
	Beginner to		Yourself	Edition
	Intermediate Book			
	and Audio Course:			
	Learn to read, write,			
	speak and			
	understand a new			
	language with Teach			
	Yourself			
 •	•			