36/V

phy

G. S. Mandal's Maharashtra Institute of Technology, Aurangabad (An Autonomous Institute) END SEMESTER EXAMINATION April/May 2022

Class: First year

Date:

Course: Open Elective-I: Engineering Physics

Time: 2 hr

Max Marks: 50

Q. 1	Solve/Answer any five			10 Marks					
	Questions	Marks	СО	BL	PO	P			
a	State the characteristics of electromagnetic waves.	2	1	1	1	1.			
	1. They do not require any material medium for their propagation.								
	2. The oscillations of and are perpendicular to each other and are in same phase.								
	1 Mark 3. They are transverse in nature.								
	4. They travel through vacuum with same speed								
	1 Mark								
b	Define nuclear fusion.	2	1	1	1	1.			
	Nuclear fusion is a reaction where lighter atomic nuclei								
	fuse together to create a larger nucleus and in the	zińwoi							
	process releases energy. 2 Mark	specialis	60 10						
С	State the formula for crystal structure.	2	1	1	1	1.			
	Lattice + basis = crystal structure	homad &	costs						
d	What is the formula relating wavelength to the	2	1	1	1	1.			
	momentum as per the de Broglie hypothesis?								
	$\lambda = \frac{h}{p}$ 1 Marks								
	$\lambda = \frac{h}{mv}$ 1 Marks	rreuteira		(13 m)					
e	State any two properties of nanomaterial.	2	1	1	1	1.			
	Superparamagnetism in small ferromagnetic particles								
	(i.e. particles which are ferromagnetic in bulk) with								

	Zero coercivity, zero remanence, high saturation					
	magnetization.					
	Reduction of grain size, higher structural disorder,					
	increased surface of grain boundary, barrier for					
	dislocation movement leading to higher material					
	strength.					
	Nanoparticles' exhibit change in color with change in			+ + 1		
	size due to the surface plasmon resonance effect, which					
	is a resonance of the outer electron bands of the particles					
	with light wavelengths.					
f	Label the parts by drawing nuclear reactor.	2	1	1	1	1.
	Control rod					
	Steam					
	Coolant . FREE REST					
	CONTRACTOR OF THE PROPERTY OF					
	Uranium					
	Coolant circulating pump					
	Moderator (Graphile) Pressure vessel Reactor Nuclear Reactor	dt lava i	70011			
	Drawing 1 Marks		The state of the state of			

Q. 2	Solve the following questions	8 Marks						
a)	Solve for calculating specific rotation of the given	4	3	3	1	1.3		
	sample of sugar solution if the plane of	nel sim		i) and				
	polarization is turned through 13.2°. The length of tube	eyro Tel		double				
	containing 10 % sugar solution is 20cm	n shmm						
	$S = \frac{10 * \theta}{l * c}$	seir tog s						
	1 Mark							
	S = specific rotation		les i					
	θ = angle of rotation = 13.2°		0,771.5	18 8 8				
	L = The length of tube 20cm	e considera			24			
	1 Mark	a de deserva	2010					

	$S = \frac{10 * 13.2}{20 * 10/100}$					
	1 Mar	k				
	$S = 66 \text{ deg} \cdot \text{mL} \cdot \text{g} - 1 \cdot \text{dm} - 1$					
	1 Mar	k				
0)	A beam of X-rays of wavelength 0.071 nm is diffracted	4	3	3	1	1
	by rock salt in which the atomic planes are 1.979 Å					
	apart. Find the glancing angle for the second-order					
	diffraction. $2d\sin\theta = n\lambda$ 1 Mark	: 0,8529 - 0 : 0.1729 se	1			
	$\lambda = 0.071 \text{ nm}$	all Solmina	172 Bei	Sulger		
	d = 1.979 Å = 0.1979 nm	est afre excitation	oten b			
	1 Mark	a ma milbi	in lo Te	niues		
	second-order diffraction: $n = 2$					
	$2*0.1979*10^{-9}*\sin\theta = 2*0.071*10^{-9}$ $\sin\theta = 2*0.071*10^{-9} / 2*0.1979*10^{-9}$ 1 Mark	a V	18 60	= A.		
	/2*0.1979*10-9			N/A		
	$\theta = \sin^{-1} 0.3587$		V.			
	$\theta = 21.02^{\circ}$ 1 Mark					

Q. 3	Solve the following questions		8 M	arks		
a)	In an auditorium of dimensions length 12 m, breadth 10	4	3	.3	2	2.2
	m and height 8 m, what will be the change in the					
	reverberation time for the auditorium hall with no	eio le re	bnie	LTM:		
	audience and full capacity of audience (100 persons) if	niz risig	15.20	niqex		
	the total absorption of the hall is 181.2 and absorption		25.1	A para		
	per person is assumed to be 0.46 / person.					
	A S COLOR DE LA CO	miwelle	Selfre	8105		.0
	$t = 0.161 \frac{V}{A}$, where $A_is \sum aS$	escribini n	HAM	distgx		
	12 *10 *0	off our	ebibsi	1307		
	$t = 0.161 \frac{12*10*8}{181.2}$ 1 Mark	is morter	raidI	2968		
	boa datevio o aidiliw es	tale, yle				
	$t = 0.8529 \mathrm{sec}$	seviana				

	den sacario y zen kaekitina isia kita kita di						
	$t = 0.161 \frac{12*10*8}{181.2 + (100*0.46)}$	1 Mark					
	$t = 0.680 \mathrm{sec}$	1 Mark					
	$t = 0.8529 - 0.680$ $t = 0.1729 \sec$	1 Mark	de V		25171		
b)	Apply the step index fiber having the numerical a	aperture	4	3	3	2	2.2
	0.26 and refractive index of core 1.5 by finding t values of cladding and acceptance angle.	he			B A =		
	NA = $n_o \sin\theta_{a=} \sqrt{n_{Core}^2 - n_{cladding}^2}$	1 Mark		F079	080		
	NA = $\sqrt{n_{Core}^2 - n_{cladding}^2}$	1 Mark	0124170		Sor		
	Mark Core Cladding	1	THEE O	nie s			
	$0.0676 = 2.25 - n_{cladding}^2$						
	$n_{cladding}^2 = 2.25 - 0.0676$		rb to mu		Market State		
	refractive index of cladding =1.477 acceptance angle $\sin^{-1} NA$	1 Mark		anna Rum	B0354		
		l Mark	по ного	oo da	elora		
Q. 4	Solve the following questions	o be 6,40	pemuaa	egi Ali	8	Mar	ks
a	Explain Miller indices notation for atomic planes Miller Indices are the convention used to label la planes. This mathematical description allows us	attice	4	2	2	1	1.2
	define accurately, planes within a crystal, and quantitatively analyse many problems in materia	ıls	2000				

	science.			1		
	Miller Indices are a method of describing the orientation					
	of a plane or set of planes within a lattice in relation to					
	the unit cell. They were developed by William Hallowes Miller.					
	1 Mark					
	These indices are useful in understanding many					
	phenomena in materials science, such as explaining the	200 800				
	shapes of single crystals, the form of some materials'			La gar		
	microstructure, the interpretation of X-ray diffraction	ter leo are:	3710377	ng weld		
	patterns, and the movement of a dislocation, which may					
	determine the mechanical properties of the material.					
	1 Mark		•			
	Step 1: Determine the intercepts of the plane along the					
	axes X,Y and Z in terms of the lattice constants a,b and					
	c.		,			
	Step 2: Determine the reciprocals of these numbers.					
	Step 3: Find the least common denominator (lcd) and					
	multiply each by this lcd.					
	Step 4:The result is written in paranthesis. This is called					
	the 'Miller Indices' of the plane in the form (h k l). This					
	is called the 'Miller Indices' of the plane in the form (h			Called		
	k l).					
	2Mark			583		
b	Summarize the liquid drop model for nucleus formation.	4	2	2	1	1.2
	1. It was the first model of nuclei. The motivation					1.2
	was to describe the masses and binding energy					
	of nuclei.					
	nuclei are assumed to behave in a similar way to					
	a liquid.					
	3. The molecules in a liquid are held together by					

	Van der Waals force that is only between near neighbors.	s aga a	anibai			
	4. The nuclear force is a short range force that		i en	g pil		
	appears to act only between neighboring		Heas			
	nucleon.					
	Each point 1 Mark					
0.5	Analyze the role of interference of light in Newton's	8		1		
	ring experiment.	ð	4	4	2	2
	ring experiment.					
	Newton's ring in reflected light					
	TM TM					
	PGP PGP					
	CL PCL CGL					
	Concentric Thinner as go away from the centre		Dieta	it qua		
	3. Closer as go away from the centre		lens ¥	X.70X		
	1 Mark					
	readmines and so the secundary as		efe(ii)	- Company		
	R = radius of curvature		bara	E men		
	R r = radius of the ring		toss y	Iginia		
	t = thickness of air film		la off3	a de		
	Plano-convex D lens Circular glass C G $(R-t)^2 + r^2 = R^2$			100 m		
	plate $R^2 - 2Rt + t^2 + r^2 = R^2$					
	$\ln \triangle$ BEF, Angle BEF = 90° $r^2 = 2Rt$					
	$BE^{2} + EF^{2} = BF^{2}$ $(BC - EC)^{2} + EF^{2} = BF^{2}$ $t = \frac{r^{2}}{2R}$ (1)					
	1 Mark			directi		
	Salar the full resident manufacture in the second control of					
1						

$$R*(2n-1)\frac{\lambda}{2} = \left(\frac{D}{2}\right)^{2}$$

$$R*(2n-1)\frac{\lambda}{2} = \frac{D^{2}}{4}$$

$$R*(2n-1)\lambda = \frac{D^{2}}{2}$$

$$2\lambda R*(2n-1) = D^{2}$$

$$D = \sqrt{2\lambda R*(2n-1)}$$

 $D \propto \sqrt{odd _natural_numbers}$

2 Mark

$$r^{2} = Rn\lambda$$

$$\left(D_{4}^{2}\right) = Rn\lambda$$

$$D^{2} = 4Rn\lambda$$

$$D = \sqrt{4Rn\lambda}$$

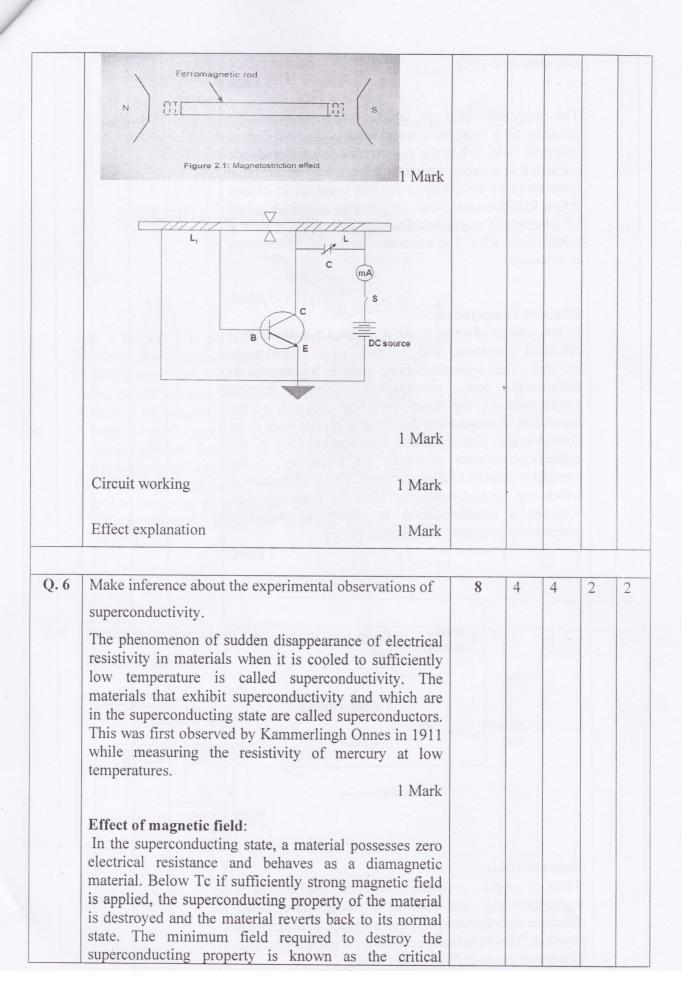
$$D \propto \sqrt{n}$$

$$D \propto \sqrt{natural - numbers}$$

2 Mark

For the expression of wavelength of light,

$$D_{n}^{2} = 4Rn \lambda$$


$$D_{n+m}^{2} = 4R(n+m)\lambda$$

$$D_{n+m}^{2} - D_{n}^{2} = 4R(n+m)\lambda - 4Rn \lambda$$

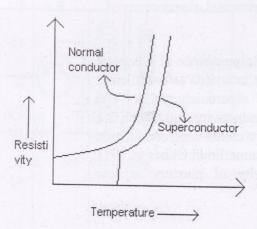
$$\lambda = \frac{D_{n+m}^{2} - D_{m}^{2}}{4mR}$$

2 Mark

						-
	OR	377				-
Q. 5	Analyze the methods of production of ultrasonic waves. The piezoelectric effect was discovered in 1880 by two French physicists, brothers Pierre and Paul-Jacques Curie. Naturally occurring: quartz, tourmaline, and Rochelle salt (potassium sodium tartrate).	8	4	4	2	2
	Synthesized: Potassium niobate (KNbO3) and lead zirconate titanate (PZT (Pb[ZrxTi1-x]O3 with $0 \le x \le 1$)). Exhibit a more pronounced piezoelectric effect. When a crystals like (calcite or quartz) under goes mechanical deformation along the mechanical axis then electric potential difference is produced along the electrical axis perpendicular to mechanical axis. This phenomenon is known as piezoelectric effect.					
	DC Supply Fig. 7.1: Piezoelectric Oscillator					
	1 Mark					
	$F = \frac{1}{2\pi\sqrt{L_2C}} \qquad F = \frac{k}{2t}\sqrt{\frac{Y}{\rho}} 2 \text{ Mark}$					

magnetic field (Hc).

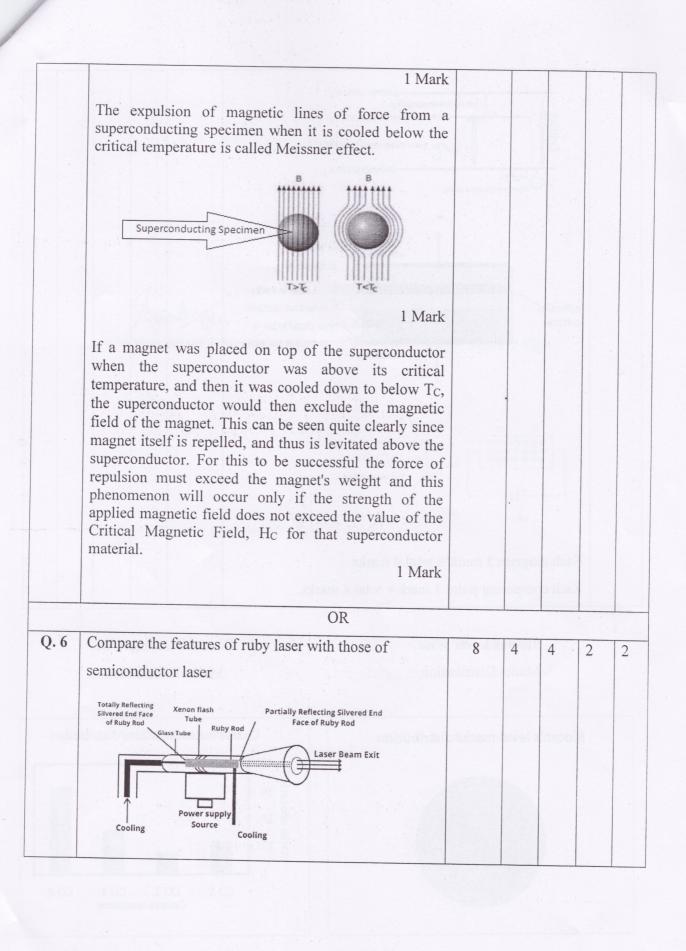
1 Mark


The magnetic field at which the superconducting property of a material disappears is called as critical magnetic field. When the superconducting materials are subjected to a strong magnetic field, it will result in the destruction of the superconducting property, i. e. they return to the normal state. The minimum field required to destroy the superconducting property is called the critical field (H_c). The variation of H_c with temperature is as shown,

1 Mark

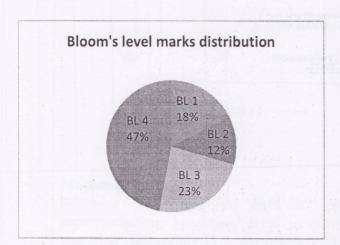
Effect of Temperature:

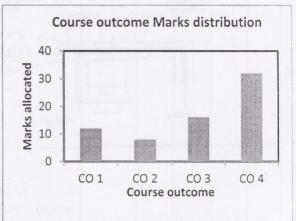
In the superconducting state, a material possesses zero electrical resistance and behaves as a diamagnetic material. This superconducting state is maintained at sufficiently low temperatures. Above critical temperature T_c, the superconducting property of the material is destroyed and the material reverts back to its normal state. The transition temperature (Tc) is the critical temperature at which the resistivity of the material suddenly changes to zero. The temperature at which the normal conductor loses its resistivity and becomes a superconductor is known as transition temperature or critical temperature (T_C).


1 Mark

1 Mark

Meissner effect:


When a weak magnetic field is applied to a superconducting specimen at a temperature below transition temperature (T_c), the magnetic flux lines are expelled. The Specimen acts as an ideal diamagnetic. This effect is called "Meissner effect".



Blooms Level Wise Marks Distribution Course Outcome Wise

Marks Distribution

