(1)

CODE NO. : H-1186-2013

(Revised Course)

FACULTY OF ENGONEERING AND TECHNOLOGY

F.Y.B.Tech.(All) EXAMINATION

MAY/JUNE, 2013

ENGINEERING MATHEMATICS-II

Time-Three Hours

Maximum Marks-80

"Please check whether you have got the right question paper."

N.B. :- (i) Question No.1 and Question No.6 are compulsory.

- (ii) From section A solve any two section questions from the remaining Q.No.2,3,4 and 5
- (iii) From section B solve any two section questions from the remaining Q.No.7,8,9 and 10
- (iv) Figures to the right indicate full marks.
- (v) Assume suitable data if necessary.

Section A

1. Solve the following

- (a) Evaluate: $\int_0^{2\pi} \sin^4 x \cos^6 x \, dx$
- (b) Find the value of a_0 in the Fourier series for $f(x) = \frac{1}{2} (\pi x)$ in $0 < x < 2\pi$
- (c) In a given Fourier series, find the value of a_0

$$f(x) = 1 - \frac{2x}{\pi}$$
, $-\pi \le x \le 0$
 $= 1 + \frac{2x}{\pi}$, $0 \le x \le \pi$

(d) Evaluate: $\int_{0}^{1} \int_{0}^{1-x} (x+y) \, dx \, dy$

(e) In the surface of solid generated by revolution of the loop of the curve $x = t^2$, $y = t - \frac{t^3}{3}$

(2)
$$H-1186-2013$$

then $\frac{ds}{dt} = \cdots$

2. (a) Evaluate:
$$\int_{0}^{1} \int_{0}^{y} xy \, e^{-x^2} \, dx \, dy$$
 5

(b) Obtain Fourier series expansion of $x \cos x$ in the range $(-\pi, \pi)$

(c) Evaluate:
$$\int_0^\infty x^2 e^{-x^4} dx \int_0^\infty e^{-x^4} dx$$
 5

3. (a) Change the order of integration by showing the region of integration

$$\int_{-a}^{a} \int_{0}^{\sqrt{a^2 - x^2}} f(x, y) \, dx \, dy$$
 5

(b) Find Fourier series:

$$f(x) = a \quad , \quad 0 < x < \pi$$

$$= -a, \ \pi < x < 2\pi$$

(c) Evaluate:
$$\int_0^1 x^5 (1-x^5)^{10} dx$$
 5

4. (a) Evaluate:
$$\int_0^\infty \frac{y^8 (1-y^6)}{(1+y)^{24}} \, dy$$
 5

(b) Evaluate $\iint \sin[\pi(ax + by)] dx dy$ over the area of a triangle bounded by

$$x = 0, y = 0 \text{ and } ax + by = 1.$$
 5

(c) Find half range sine series for f(x)

$$f(x) = \frac{x}{2}, 0 < x < \alpha$$
$$= \frac{\alpha}{2}, \alpha < x < \pi - \alpha$$
$$= \frac{1}{2} (\pi - x), \ \pi - \alpha < x < \pi$$

5 (a) Evaluate: $\int_0^{\pi/2} \int_0^{a \sin\theta} \int_0^{\frac{a^2 - r^2}{a}} r \, dr \, d\theta \, dz$ 5

- (b) Find half range cosine series for f(x) = sinx in $0 < x < \pi$ 5
- (c) By double integration, find the area enclosed by $y^2 = \frac{x^2(a^2 x^2)}{a^2 + x^2}$ 5

Section **B**

6. Solve the following

- (a) In the cycloid curve $x = a(\theta \sin\theta)$ and $y = a(1 + \cos\theta)$ find $\frac{dy}{dx}$
- (b) Find the asymptote foe a curve $x(x^2 + y^2) = a(x^2 y^2)$
- (c) Define linear differential equation.
- (d) Define centre of curvature.
- (e) Find integral factor for the equation $\frac{dy}{dx} + x^2y = x^5$
- 7.(a) Trace the curve $r = a(1 + cos\theta)$
 - (b) Solve: $\frac{dy}{dx} + xy = xy^3$
 - (c) Show that radius of curvature at the point (-2a, 2a) on the curve $x^2y = a(x^2 + y^2)$ is 2a.

8.(a) Trace the curve
$$y^2(x^2 + a^2) = x^2(a^2 - x^2)$$
 with full justification. 5

(b) Solve:
$$(1 + y^2) + (x - e^{\tan^{-1}y})\frac{dy}{dx} = 0$$
 5

(c) Determine the radius of curvature at the origin for the curve

$$x^{3}y - xy^{3} + 2x^{2}y + xy - y^{2} + 2x = 0$$
5

- 9.(a) Trace the curve: $x = a(\theta sin\theta)$, $y = a(1 cos\theta)$
 - (b) Show that the radius of curvature at any point of the curve $x^{2/3} + y^{2/3} = a^{2/3}$ is equal to three times the length of the perpendicular from the origin to the tangent at the point.
 - (c) A particle of mass m under gravity in a medium whose resistance is k times its velocity, where k is constant. If the particle projected vertically upwards with velocity V, show that the time to reach the maximum height is $\frac{m}{k} Log[1 + \frac{kv}{mg}]$ 5

10

5

5

10. (a) Find orthogonal trajectory of the curve rⁿ = aⁿ sinnθ
(b) Find the length of the arc of the curve ay² = x³ from the vertex to the point whose

abscissa is b.

(c) when a resistance R ohms is connected in a series with an inductance L, henries emf E volts, the current *i* builds up at the rate given by the equation: $L\frac{di}{dt} + Ri = E$, i(0) = 0 given that if L = 0.05, R = 100 and $E = 200 \cos(300t)$ (5)

CODE NO. : P-1001-2013

(Revised Course)

FACULTY OF ENGONEERING AND TECHNOLOGY

F.Y.B.Tech.(All) EXAMINATION

NOVEMBER/DECEMBER, 2013

ENGINEERING MATHEMATICS-II

Time-Three Hours

Maximum Marks-80

"Please check whether you have got the right question paper."

- N.B. :- (i) Question No.1 and Question No.6 are compulsory.
 - (ii) From section A solve any two section questions from the remaining Q.No.2,3,4 and 5
 - (iii) From section B solve any two section questions from the remaining Q.No.7,8,9 and 10
 - (iv) Figures to the right indicate full marks.
 - (v) Assume suitable data if necessary.

Section A

1. Solve any five (Each for two marks)

- (a) Find: $\frac{7}{2}$
- (b) Prove that: $\beta(m, n) = \beta(m, n + 1) + \beta(m + 1, n)$
- (c) Evaluate: $\int_0^\infty \frac{x^8(1-x^6)}{(1+x)^{24}} dx$
- (d) Evaluate: $\int_0^1 \int_x^{2x} x \, dx \, dy$
- (e) For: $\int_0^1 \int_x^{2x} dx dy$ show the region of integration.
- (f) Write formula to find surface area of the solid of revolution, if the area bounded by the curve y = f(x), x = a, x = b revolves about x-axis.

(g) Half range cosine series is obtained by $f(x) = \dots$ (Write formula)

(6)

(h) Check whether the function is even or odd

$$f(x) = 1 + \frac{2x}{\pi}, -\pi \le x \le 0$$

= $1 - \frac{2x}{\pi}, 0 \le x \le \pi$

Justify your answer.

2. (a) Evaluate:
$$\int_{0}^{1} x^{3} \left(1 - \sqrt{x}\right)^{5} dx$$
 5

- (b) Evaluate: $\iint xy (x + y) dx dy$ over the area between $y = x^2$ and y = x 5
- (c) Find sine series to represent f(x) between x = 0 and x = l where

$$f(x) = x, 0 \le x \le \frac{l}{3}$$

= $\frac{1}{2}(l-x), \frac{l}{3} \le x \le l$ 5

- 3. (a) Evaluate: $\int_0^{\pi/2} \sqrt{\cot\theta} \ d\theta$ 5
 - (b) Find the area of the curve $r^2 = a^2 cos 2\theta$
 - (c) Find the Fourier series for:

$$f(x) = -x^{2}, -\pi < x < 0$$

= x², 0 < x < π 5

4. (a) Prove that:
$$\int_{1}^{\infty} \frac{x^{\frac{n}{2}-1}}{(1+x)^{n}} = \frac{1}{2} \beta\left(\frac{n}{2}, \frac{n}{2}\right)$$
 5

(b) Change the order of integration
$$\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dy dx$$
 and hence evaluate. 5

(c) Obtain Fourier series

$$f(x) = 0, -\pi \le x \le 0$$

= $\frac{\pi}{4}x, 0 \le x \le \pi$ 5

(7)
$$P-1001-2013$$

5 (a) Find the surface area formed by the revolution of the cycloid:

$$x = a(\theta + sin\theta)$$
, $y = a(1 - cos\theta)$ about tangent and its vertex. 5

(b) Evaluate:
$$\int_{0}^{4} \int_{0}^{2\sqrt{z}} \int_{0}^{\sqrt{4z-x^{2}}} dx \, dy \, dz$$
 5

(c) Expand $(\pi x - x^2)$ as a cosine series for $0 < x < \pi$

Section B

- 6. Solve any five (Each for two marks)
 - (a) For the curve $y = c \cosh \frac{x}{c}$ find $\frac{dy}{dx}$ hence find the equation of tangent at (0, c)
- (b) Find the equation of the asymptote to the curve: $y(x^2 1) = x$
- (c) Curve $r = a \sin 3\theta$ is symmetrical about Justify your answer.
- (d) Define solution of differential equation.

(e) Find the integrating factor for differential equation: $R \frac{dQ}{dt} + \frac{Q}{c} = V$

- (f) $\frac{dy}{dx} + \frac{ycosx+siny+y}{sinx+xcosy+x} = 0$ is exact? Justify your answer.
- (g) Radius of curvature for the curve y = f(x) is obtained by $\rho = \dots$
- (h) If y-axis is the tangent to the curve at the origin then $\rho_0 = \dots$
- 7. (a) Trace the curve: $y(x^2 + 4a^2) = 8a^3$ with full justification
 - (b) Solve: $x \, dy = \{y + xy^3(1 + Logx)\}dx$
 - (c) Prove that the chord of curvature through the pole for: $r = ae^{m\theta}$ is 2r
- 8. (a) Find the whole length of the curve: $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ 5
 - (b) Find the orthogonal trajectory of the family of the curve: $r^n = a^n \cos n\theta$ 5
 - (c) Find the radius of curvature for $r = a(1 + cos\theta)$

10

5

5

9. (a) Trace the curve $x = t^2$, $y = t(1 - \frac{t^2}{3})$ with full justification. 5

(b) A constant emf E volts is applied to an electrical circuit containing resistance R and inductance L in series. If the initial current is zero show that the time for current to build up

to half of its maximum is:
$$\frac{L \log 2}{R}$$
 sec. 5

(c) Find the radius of curvature at the origin for the curve:

$$x^{3} - 2x^{2}y + 3xy^{2} - 4y^{3} + 5x^{2} - 6xy + 7y^{2} - 8y = 0$$
5

10. (a) Trace the curve $r^2 = a^2 \cos 2\theta$ with full justifiacation.

(b) A particle falls in a vertical line under gravity and air resistance to its motion is proportional to its velocity and distance as function of *t*.shoow that the velocity V will never exceed $\frac{g}{k}$

(c) Solve:
$$\left(1 + e^{\frac{x}{y}}\right)dx + e^{\frac{x}{y}}\left(1 - \frac{x}{y}\right)dy = 0$$
 5

(9)

CODE NO. : K-1220-2014

(Revised Course)

FACULTY OF ENGINEERING AND TECHNOLOGY

F.Y.B.Tech.(All) EXAMINATION

MAY/JUNE, 2014

ENGINEERING MATHEMATICS-II

Time-Three Hours

Maximum Marks-80

"Please check whether you have got the right question paper."

N.B. :- (i) Question No.1 and Question No.6 are compulsory.

- (ii) From section A solve any two section questions from the remaining Q.No.2,3,4 and 5
- (iii) From section B solve any two section questions from the remaining Q.No.7,8,9 and 10
- (iv) Figures to the right indicate full marks.
- (v) Assume suitable data if necessary.

Section A

- 1. Solve any five (Each for two marks)
 - (a) Find the value of $\frac{\left[\frac{5}{2}\right]\frac{3}{2}}{\left[4\right]}$
 - (b) Prove that: $\beta(m, n) = \beta(m, n + 1) + \beta(m + 1, n)$
 - (c) Evaluate: $\int_0^1 x^3 (1-x)^4 dx$ by using beta function.
 - (d) Evaluate: $\int_0^1 \int_1^2 dx \, dy$
 - (e) For: $\int_0^1 \int_x^{2x} dx dy$ show the region of integration.
 - (f) Find the limits of integration to evaluate $\iint y \, dx \, dy$ over the area of the circle:

 $x^2 + y^2 = 1$ when the strip is drawn parallel to y-axis.

(10)	K-1220-2014

- (g) Find a_0 for the Fourier series for: $f(x) = e^{-ax}$ in $0 < x < 2\pi$
- (h) Find a_0 for $f(x) = \frac{\pi^2}{12} \frac{x^2}{4}$ in $-\pi \le x \le \pi$ 2. (a) Evaluate: $\int_0^\infty \frac{y^4}{4y} dy$ 5 (b) Evaluate: $\int (x^2 - y^2) dA$ over the area of the triangle whose vertices are at the points (0,1), (1,1) and (1,2) 5 (c) Expand e^x as a cosine series in (0, l)5 3. (a) Evaluate: Evaluate: $\int_0^\infty \frac{dx}{1+r^4}$ 5 (b) Find by double integration the area of the asteroid: $x = a \cos^3 \theta$, $y = a \sin^3 \theta$ 5 (c) Find the Fourier series for: $f(x) = \frac{x(\pi^2 - x^2)}{12}$ in $(-\pi, \pi)$ 5 4. (a) Prove that: $\beta(m, n) = \int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx$ 5 (b) Change to polar and evaluate: $\iint x^3 dx dy$ over the interior of the circle $x^2 + y^2 - 2ax = 0$ 5 (c) Find Fourier series of f(x) = a, $0 \le x \le \pi$ $= -a, \pi < x < 2\pi$ 5 5 (a) Find the surface of the solid generated by the revolution of the lemniscates $r^2 = a^2 cos 2\theta$ about initial line. 5 (b) Evaluate: $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} dx \, dy \, dz$ 5 (c) Find the Fourier series for: $f(x) = x^2 - 2$, $-2 \le x \le 2$ 5 Section B 6. Solve any five (Each for two marks) 10 (a) For the curve $r = a \cos 2\theta$ find the equation of the tangents at the pole.
 - (b) Curve: $x = a(\theta sin\theta), y = a(1 + \cos\theta)$ is symmetrical about axis.

5

5

5

Justify your answer.

- (c) Find the point of intersection with x-axis. Also find the equation of the tangents at the point of intersection for the curve: $y^2(4 x) = x(x 2)^2$
- (d) Define exact differential equation.
- (e) Find integrating factor (I.F.) of : $L\frac{di}{dt} + Ri = E$
- (f) Reduce it to linear form: $\frac{dy}{dx} = x^3 y^3 xy$
- (g) Find the centre of curvature of: $y = x^3 6x^2 + 3x + 1$ at (1, -1)
- (h) Write formula for ρ when the curve is given by its pedal equation.
- 7. (a) Trace the curve $y^2(a + x) = x^2(3a x)$ 5
 - (b) Solve: $(1 + y^2)dx = (tan^{-1}y x)dy$ 5
 - (c) Find the chord of curvature through the pole for: $r^m = a^m cosm\theta$

8. (a) Show that in the catenary $y = c \cosh\left(\frac{x}{c}\right)$ the length of the arc from vertex to any

point is
$$s = c \sinh\left(\frac{x}{c}\right)$$
 5

- (b) Find the orthogonal trajectories of the family of the curve: $\frac{l}{r} = 1 + \cos\theta$ 5
- (c) For the curve $r^2 = a^2 cos 2\theta$ prove that $\rho = \frac{a^2}{3r}$ 5
- 9. (a) Trace the curve $x = a \cos^3 \theta$, $y = a \sin^3 \theta$ with full justification.

(b) The equation of the electromotive force in terms of current i for an electrical circuit having resistance R, and a condenser of capacity C in series is : $E = Ri + \int \frac{i}{c} dt$ Find the current i, when $E = E_m \sin\omega t$.

(c) Find the radius of curvature at the origin for the curve:

 $2x^4 + 2y^4 + 4x^2y + xy - y^2 + 2x = 0$

(12)	K-1220-2014
(12)	K 1220 2014

10. (a) Trace the curve $r = 2 + 3 \cos\theta$ with full justification. 5 (b) A moving body is opposed by a force per unit mass of value cx and resistance per unit mass of value bv^{2} , where x and v are the displacement and velocity of the

particle if it starts from rest is given by :

$$v^2 = \frac{c}{2b^2} \left(1 - e^{-2bx}\right) - \frac{cx}{b}$$
 5

(c) Solve:
$$\frac{dy}{dx} = -\left(\frac{x+y\cos x}{1+\sin x}\right)$$
 5

(13)

CODE NO. : U-1101-2014

(Revised Course)

FACULTY OF ENGONEERING AND TECHNOLOGY

F.Y.B.Tech.(All) EXAMINATION

NOVEMBER/DECEMBER, 2014

ENGINEERING MATHEMATICS-II

Time-Three Hours

Maximum Marks-80

"Please check whether you have got the right question paper."

- N.B. :- (i) Question No.1 and Question No.6 are compulsory.
 - (ii) From section A solve any two section questions from the remaining Q.No.2,3,4 and 5
 - (iii) From section B solve any two section questions from the remaining Q.No.7,8,9 and 10
 - (iv) Figures to the right indicate full marks.
 - (v) Assume suitable data if necessary.

Section A

- 1. Solve any five (Each for two marks)
 - (a) Define beta function.
 - (b) Find $\left[\frac{9}{2}\right]$
 - (c) Evaluate: $\int_0^1 \int_0^2 (x^2 + y^2) \, dy \, dx$
 - (d) Change the order of integration: $\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dx dy$
 - (e) Change to the polar coordinates: $\int_0^a \int_{\sqrt{ax-x^2}}^{\sqrt{a^2-x^2}} \frac{dx \, dy}{\sqrt{a^2-x^2-y^2}}$
 - (f) Define Dirichlet's condition

- (g) Check whether the function is even or odd
 - $f(x) = \pi + x, -\pi < x < 0$ = $\pi - x, 0 < x < \pi$
- (h) Find half range cosine series in $(0, \pi)$ of f(x) = 2
- 2. (a) Prove that: $\beta(m, n) = \int_0^\infty \frac{t^{m-1}}{(1+t)^{m+n}} dt$
 - (b) Change the order of integration and hence evaluate it $\int_0^a \int_{\frac{x}{a}}^{\frac{x}{a}} (x^2 + y^2) dx dy$

(14)

- (c) Find the Fourier series for the function $f(x) = 2x x^2$ in the range (0,3)
- 3. (a) Evaluate: $\int_{0}^{\infty} \sqrt{x} e^{-x^{1/3}} dx$
 - (b) Change the order of integration and evaluate $\int_0^1 \int_{x^2}^{2-x} xy \, dx \, dy$
 - (c) Find the half range cosine series for f(x) = sinx, $0 < x < \pi$ and hence deduce that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

- 4. (a) Evaluate: $\int_{3}^{7} \sqrt[4]{(7-x)(x-3)} dx$
 - (b) Evaluate: $\int_0^1 \int_0^{1-x} \int_0^{1-x-y} dx \, dy \, dz$
 - (c) Find Fourier series of $f(x) = \pi^2 x^2$ in the interval $-\pi < x < \pi$
- 5.(a) Find the area between the curve $y^2 = \frac{x^3}{a-x}$ and x = a asymptote.
 - (b) Find by double integration the area common to $x^2 + y^2 = a^2$ and

$$x^2 + y^2 - 2ax = 0$$

(c) Obtain Fourier series expansion of the function

$$f(x) = 1 - \frac{2x}{\pi} , -\pi \le x \le 0$$
$$= 1 + \frac{2x}{\pi} , 0 \le x \le \pi$$

	U-1101-2014

Section B

(15)

6. Solve any five (Each for two marks)	
(a) Find the equation of asymptote to the curve $y^2(a - x) = x^2$	
(b) Write formula for length of Cartesian curve $S = \dots$	
(c) Curve $r = a \sin 3\theta$ is symmetric about	
(d) Write equation for L-R circuit.	
(e) In exact differential equation, condition for exact is	
(f) If $y^2 \frac{dx}{dy} + xy = 2y^2 + 1$ then <i>I</i> . <i>F</i> . =	
(g) Radius of curvature for the curve $x = f(y)$ is obtained by $\rho = \dots$	
(h) If x-axis is the tangent to the curve at origin, then $\rho_0 = \dots$	
7. (a) Trace the curve $a^2y^2 = x^2(a^2 - x^2)$ with full justification.	
(b) Solve: $\cos^2 x \frac{dy}{dx} + y = tanx$	
(c) Find the radius of curvature to the curve $r^n = a^n sinn\theta$	
8. (a) Trace the curve $= a + b \cos\theta$, when $a > b$	
(b) Solve: $\frac{dy}{dx} + \frac{y\cos x + \sin y + y}{\sin x + x\cos y + x} = 0$	
(c) Show that radius of curvature at any point (x, y) of the hypocycloid $x^{2/3} + y^{2/3} = a^{2/3}$	is

three times the length of perpendicular from the origin to the tangent at (x, y).

- 9. (a) Trace the curve $x = a(\theta + sin\theta), y = a(1 + cos\theta)$
 - (b) Find the orthogonal trajectory of the family of curves $r = a(1 cos\theta)$
 - (c)Find the radius of curvature at the origin for the curve:

$$x^4 - y^4 + x^3 - y^3 + x^2 - y^2 + y = 0$$

10. (a) Find the whole length of the loop of the curve $3ay^2 = x(x - a)^2$

(b) Show that the differential equation for current *i* in an electric circuit containing an inductance L and resistance R in series and acted on by e.m.f. *sinwt* is $\frac{di}{dt} + \frac{R}{L}i = \frac{E}{L}sin\omega t$ Find current *i* at any time t, if initially there is no current in the circuit.

(c) Solve: $\frac{dy}{dx} = 2y \tan x + y^2 \tan^2 x$

(17)

CODE NO. : K-1287-2015

(Revised Course)

FACULTY OF ENGINEERING AND TECHNOLOGY

F.Y.B.Tech.(All) EXAMINATION

MAY/JUNE, 2015

ENGINEERING MATHEMATICS-II

Time-Three Hours

Maximum Marks-80

10

"Please check whether you have got the right question paper."

- N.B. :- (i) Question No.1 and Question No.6 are compulsory.
 - (ii) From section A solve any two section questions from the remaining Q.No.2,3,4 and 5
 - (iii) From section B solve any two section questions from the remaining Q.No.7,8,9 and 10
 - (iv) Figures to the right indicate full marks.
 - (v) Assume suitable data if necessary.

Section A

- 1. Solve any five (Each for two marks)
 - (a) Define Gamma function.
 - (b) Find: $\int_{0}^{\pi/4} \cos^{3}2t \sin^{2}4t \, dt$
 - (c) Evaluate: $\int_0^3 \int_0^1 (x^2 + 3y^2) \, dy \, dx$
 - (d) Change the order of integration: $\int_0^1 \int_0^{\sqrt{1-x^2}} \frac{y \, dx \, dy}{(1+y^2)\sqrt{(1-x^2-y^2)}}$
 - (e) Change to polar coordinates: $\iint_R \sqrt{x^2 + y^2} \, dx \, dy$ where R: $x^2 + y^2 = 4$
 - (f) Half range sine series is obtained by $f(x) = \dots$ (Write formula).

10

- (18)
- (g) If function is even, then Fourier series $f(x) = \dots$
- (h) Find Fourier sine series of x over (0,1)

2. (a) Prove that:
$$\int_0^\infty \frac{x^{m-1}}{(a+bx)^{m+n}} dx = \frac{1}{a^n b^m} \beta(m,n)$$
 5

(b) Evaluate:
$$\int_{0}^{a} \int_{y}^{b} \frac{x^{2}}{(x^{2}+y^{2})^{1/2}} dx dy$$
 by changing the order of integration. 5

(c) Obtain the Fourier expansion of: f(x) = cosax in the range $(0,2\pi)$

3. (a) Evaluate:
$$\int_0^\infty \sqrt[4]{t} e^{-\sqrt{t}} dx$$

- (b) Change the order of integration and evaluate: $\int_0^1 \int_y^{\sqrt{y}} xy \, dx \, dy$ 5
- (c) Find half range cosine series for: $f(x) = \pi x$, $0 \le x \le \pi$ 5

4. (a) Evaluate:
$$\int_0^{\pi/2} \sqrt{\cos\theta} \ d\theta$$
 5

(b) Evaluate:
$$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} xyz \, dx \, dy \, dz$$
 5

(c) Find the Fourier series to represent the function f(x) = |x| in the interval $-\pi < x < \pi$ 5

- 5 (a) Find the area between the curve: $y^2 = \frac{a^2 x}{a x}$ and its asymptote. 5
 - (b) Show that the surface area of the sphere generated by the revolution of the upper part of the circumference of the circle $x^2 + y^2 = a^2$ about x-axis is $4\pi a^2$ 5
 - (c) Find Fourier series for: f(x) = a, $0 < x < \pi$

$$= -a$$
, $\pi < x < 2\pi$ 5

Section **B**

- 6. Solve any five (Each for two marks)
 - (a) Find the equation of asymptote to the curve: $y^2(a x) = x^2(a + x)$
 - (b) Write a formula of length of parametric curve $s = \dots$
 - (c) Curve $r = a + b \cos\theta$, a < b symmetric about
 - (d) Write a equation for R-C circuit.

5

5

5

(e)
$$\frac{dy}{dx} = \frac{y+1}{(y+2)e^y-x}$$
 is exact differential equation. Justify your answer.

- (f) Find I.F. of: $\frac{dy}{dx} + x^2y = x^5$
- (g) Write formula for chord of curvature.
- (h) Radius of curvature for the curve y = f(x) is obtained by $\rho = \dots$

7. (a) Trace the curve:
$$a^4y^2 = x^5(2a - x)$$
 giving full justification.

(b) Solve:
$$y^2 \frac{dx}{dy} + xy = 2y^2 + 1$$
 5

- (c) Find the centre of circle of curvature for: xy(x + y) = 2 at (1, 1) 5
- 8. (a) Trace the curve $r = a \sin 3\theta$ with full justification.

(b) Solve:
$$\left(1 + e^{\frac{x}{y}}\right)dx + e^{\frac{x}{y}}\left(1 - \frac{x}{y}\right)dy = 0$$
 5

(c) Show that radius of curvature at any of the curve: $x^{2/3} + y^{2/3} = a^{2/3}$ is to equal three times the length of perpendicular from the origin to the tangent at that point.

9. (a) Trace the curve
$$x = a \cos^3 t$$
, $y = a \sin^3 t$ with full justification. 5

- (b) Find the orthogonal trajectory of the family of the curve: $x^2 + y^2 = 2ax$ 5
- (c) Find the radius of curvature at the origin for the curve: $y^2 3xy + 2x^2 x^3 + y^4 = 0$ 5
- 10. (a) Find the total length of the cycloid $x = a(\theta + sin\theta)$, $y = a(1 cos\theta)$
 - (b) In an electric circuit containing resistance R , an inductance L, the voltage and
 - current *i* are connected by equation : $L\frac{di}{dt} + Ri = E$. If L = 540, R = 150,
 - E = 300 and i = 0 when t = 0. Show that current will approach 2 amps as t
 - increases. Also find in how many seconds i will approach 90% of the maximum value. 5

(c) Solve:
$$r \sin\theta - \frac{dr}{d\theta} \cos\theta = r^2$$
 5

(20)

CODE NO. : K-1101-2015

(Revised Course)

FACULTY OF ENGONEERING AND TECHNOLOGY

F.Y.B.Tech. (All) EXAMINATION

NOVEMBER/DECEMBER, 2015

ENGINEERING MATHEMATICS-II

Time-Three Hours

Maximum Marks-80

"Please check whether you have got the right question paper."

- N.B. :- (i) Question No.1 and Question No.6 are compulsory.
 - (ii) From section A solve any two section questions from the remaining Q.No.2,3,4 and 5
 - (iii) From section B solve any two section questions from the remaining Q.No.7,8,9 and 10
 - (iv) Figures to the right indicate full marks.
 - (v) Assume suitable data if necessary.

Section A

- 1. Solve any five (Each for two marks)
 - (a) Evaluate: $\int_0^{\pi/6} \cos 43t \sin 36t dt$
 - (b) Define Gamma function.
 - (c) Evaluate: $\int_{1}^{a} \int_{1}^{b} \frac{dy \, dx}{xy}$
 - (d) Change the order of integration: $\int_{-a}^{a} \int_{0}^{\sqrt{a^2 x^2}} f(x, y) \, dx \, dy$
 - (e) Change to the polar coordinates: $\iint (1 x^2 y^2)^{1/2} dx dy$
 - (f) Define Dirichlet's condition

- (g) Check whether the function is odd or even
 - $f(x) = -x , -\pi < x < 0$ $= x , 0 < x < \pi$
- (h) Half range cosine series is obtained by $f(x) = \dots$
- 2. (a) Prove that: $\int_{a}^{b} (x-a)^{m} (b-x)^{n} dx = (b-a)^{m+n+1} \beta(m+1,n+1)$ 5

(21)

(b) Evaluate: $\int_{0}^{2} \int_{2-\sqrt{4-y^{2}}}^{2+\sqrt{4-y^{2}}} dx \, dy$ by changing the order of integration. 5

(c) Expand $f(x) = x \sin x$ in a Fourier series in the interval $0 \le x \le 2\pi$ 5

- 3. (a) Evaluate: $\int_{0}^{1} (x \log x)^{3} dx$ 5
 - (b) Change the order of integration and evaluate: $\int_0^1 \int_x^{2x} dx \, dy$ 5

(c) Find the half range cosine series for f(x) = sinx, $0 < x < \pi$ and hence deduce that 5

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

4. (a) Evaluate:
$$\int_0^1 x^5 [1 - x^3]^{10} dx$$
 5

(b) Evaluate:
$$\int_0^1 \int_0^{1-x} \int_0^{1-x-y} e^x dx \, dy \, dz$$
 5

(c) Find Fourier series of $f(x) = \pi^2 - x^2$ in the interval $(-\pi, \pi)$ and deduce that: 5

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$

5. (a) Find by double integration the area bounded between the curves $y = x^2$ and y = 2x + 3

- (b) Find volume of the solid generated by revolution of the curve: $xy^2 = 4(2 x)$ 5 about y-axis.
- (c) Find half range cosine series for:

$$f(x) = 1, 0 < x < 1$$

= x, 1 < x < 2

K-	-1101	-2015

Section B

6. Solve any five (Each for two marks)	10
(a) Find the equation of asymptote to the curve: $y^2(a - x) = a^2 x$	
(b) Write a formula for length of Polar curve $S = \dots$	
(c) Curve $r = a + b \cos\theta$, $a > b$ symmetrical about	
(d) Write an equation for L-R-C circuit.	
(e) $y dx = (siny - x)dy$ is exact differential equation ?	
(f) Find P.I. of: $\frac{dy}{dx} + y \cot x = 5e^{\cos x}$	
(g) Write a formula for chord of curvature.	
(h) Radius of curvature for the curve $y = f(x)$ is obtained by $\rho = \dots$	
7. (a) Trace the curve with full justification: $x^2(x^2 + y^2) = a^2(x^2 - y^2)$	5
(b) Solve: $\frac{dy}{dx} + x^2y = x^5$	5
(c) Find the centre of circle of curvature for: $xy(x + y) = 2$ at (1,1)	5
8. (a) Trace the curve $r = a \cos 2\theta$ with full justification.	5
(b) Solve: $(y^2 + e^{xy^2} + 4x^3)dx + (2xye^{xy^2} - 3y^2)dy = 0$	5
(c) Find the radius of curvature at any point (r, θ) of the conic section: $\frac{l}{r} = 1 + e \cos\theta$	5
9. (a) Trace the curve $x = a(\theta + sin\theta), y = a(1 - cos\theta)$	5
(b) Find the orthogonal trajectory of the family of curves: $y^2 = c(1 + x^2)$	5
(c) Find the radius of curvature at the origin for the curve:	5
$y^2 - 3xy + 2x^2 - x^3 + y^4 = 0$	

10. (a) Find the length of the cardoid: $r = a(1 - cos\theta)$ and show that the upper half of the curve

bisected at:
$$\theta = \frac{2\pi}{3}$$
 5

(b) A resistance of 100 ohms, an inductance of 0.5 henry are connected in series with a battery of 20 volts. Find the current in the circuit a function of time.

(c) Solve:
$$\frac{dy}{dx} = x^3 y^3 + xy$$
 5

Compiled & Collected by Prof. Shaikh Zameer H.